2.1 Определить статические нагрузки, действующие на валу двигателя
2.2 Подсчитать потребляемую мощность двигателя и выбрать его по каталогу
2.3 Рассчитать пусковое сопротивление, подобрать по каталогу и дать внешнюю схему соединения
2.4 Построить графики скорости и тока в роторе двигателя в зависимости от времени
2.5 Построить графики регулировочных механических характеристик двигателя
2.6 Проверить выбранный двигатель по типу и по перегрузочной способности
2.7 Определить расход электроэнергии за сутки, среднесуточный КПД и коэффициент мощности
3. Схема силовой цепи электропривода
Список литературы
1. Теоретическая часть
Эскалаторы получили широкое применение на станциях метрополитена, в административных и торговых зданиях, где имеются большие потоки пассажиров. В зданиях целесообразно использовать эскалаторы совместно с методами причем эскалаторы устанавливаются на нижних этажах, где имеется место наиболее интенсивного движения.
Существуют эскалаторы двух типов: с одной и двумя рабочими ветвями лестничного полотна. Из-за сравнительно небольших габаритов более широкое применение получили эскалаторы с одной рабочей ветвью.
У эскалатора ступени лестничного полотна связаны шарнирами с двумя замкнутыми цепями, которые приводятся в движение ведущей звездочкой. Ступени катятся по бегункам по направляющим. Нижние звездочки связаны с натяжной станцией, которая обеспечивает постоянное натяжение тяговых цепей. Вал верхней звездочки через цепную передачу и редуктор связан с приводным двигателем.
Приводная станция эскалатора снабжена двумя рабочими тормозами и аварийными. Рабочие тормоза устанавливаются непосредственно у двигателя, а аварийный тормоз - у вала тяговой звездочки.
Для удобства и безопасности пользования с двух сторон от лестничного полотна эскалатор снабжен движущимися поручнями. Поручни приводят в движение через цепные передачи или редуктор от главного двигателя тяговых цепей.
Скорость движения лестничного полотна эскалатора в пределах от 0,45-1 м/с. Верхний предел скорости ограничен тем, что вход и выход пассажиров происходят на ходу.
2. Расчетная часть
2.1 Определить статические нагрузки, действующие на валу двигателя
Зависимость момента от времени пуска двигателя (рис.8).
-- момент двигателя на i-той ступени.
1 ступень.
с, с, с
Нм
Нм
Нм
Нм
2 ступень.
с, с, с
Нм
Нм
Нм
Нм
3 ступень.
с, с, с
Нм
Нм
Нм
Нм
4 ступень.
с, с, с
Нм
Нм
Нм
Нм
5 ступень.
с, с, с
Нм
Нм
Нм
Нм
Выход на естественную характеристику.
Нмс
, с, с
Нм
Нм
Нм
М, Нм
1803
1100
1,5 2,5 3 3,5 t,c
Рис.8. Зависимость момента двигателя от времени пуска.
Зависимость тока в роторе двигателя при пуске (рис.9).
-- скольжение при i-той скорости.
-- ток ротора при i-том скольжении и моменте.
Rj -- полное сопротивление ротора при работе на j-той ступени.
1 ступень.
А А
А А
2 ступень.
А А
А А
3 ступень.
А А
А А
4 ступень.
А А
А А
5 ступень.
А А
А
Выход на естественную характеристику:
А А
А
Пусковой ток при … ступеней:
S=1
А А
А
, А
258
150
33,3
1,5 2,5 3 3,5 t, с
Рис.9. Зависимость тока ротора двигателя от времени пуска.
2.6 Проверка двигателя по типу и по перегрузочной способности
По нагрузочной диаграмме (Рис.10) видно, что Рmax = 0,75 Рном.
Р, кВт
56,25
52,50
48,75
45,00
30,00
9 13 15 17 19 23 t, ч
Рис. 10. Изменение нагрузки на эскалатор в течение суток
При самой загруженной смене работы эскалатора максимальная мощность не превышает 75% от номинальной мощности. Поэтому двигатель не будет работать в перегруженном состоянии, и не будет перегреваться.
2.7 Расход электроэнергии за сутки, среднесуточный КПД и коэффициент мощности
Расход электроэнергии за сутки определяется по следующей формуле: