рефераты курсовые

История и развитие сварочного производства

p align="left">После краткого знакомства с особенностями дугового разряда и условиями его существования перейдем к рассмотрению наиболее распространенных видов дуговой сварки. Анализ объема использования различных способов дуговой сварки в различных отраслях показывает, что в настоящее время основным способом является ручная дуговая сварка покрытым электродом, что объясняется простотой и универсальностью этого способа сварки. Хотя доля ручной дуговой сварки непрерывно снижается [10], она еще длительное время будет использоваться как маневренный и доступный способ сварки, особенно при выполнении работ в труднодоступных местах и в условиях монтажа.

Как уже ранее упоминалось, открытие Н.Н. Бенардоса усовершенствовал Н.Г. Славянов, заменив угольный электрод металлическим, плавящимся. Однако использование непокрытого, голого (или покрытого тонким слоем мела для стабилизации дугового разряда) прутка-электрода не обеспечивало получения сварных швов высокого качества из-за насыщения металла кислородом и азотом из атмосферы воздуха.

В 1907 г. шведский инженер О. Кьельберг предложил первые качественные или толстопокрытые электроды, применение которых значительно повысило качество сварных швов (механические свойства, внешний вид). Поэтому ручная дуговая сварка покрытым электродом нашла быстрое применение за рубежом -- на заводах США, Англии, Австро-Венгрии и других стран. В СССР первые электроды с толстым покрытием были разработаны почти одновременно (1930--1935) в ряде организаций. Большинство марок электродов (ЛИМ, ВЭТ-26, ОММ-1, ОММ-2, ОММ-5, АН-4 и др.) предназначались для сварки малоуглеродистых сталей. Несколько позднее были созданы в ЦНИИТМАШе электроды ЦМ-7, нашедшие большое применение при изготовлении сварных конструкций из тех же сталей. В 1940--1941 гг. группой Ленинградских инженеров под руководством К.В. Петраня была разработана серия покрытий типа УОНИ-13, которые по праву и сегодня можно отнести к лучшим электродам. С их появлением стало возможным сваривать не только малоуглеродистые и низколегированные, но и среднеуглеродистые, различные легированные конструкционные стали, сварка которых ранее была весьма затруднена.

В 60-е годы в СССР была разработана серия малотоксичных электродов (АНО, ОЗС, МР), при сварке которыми, в отличие от применявшихся, например ЦМ-7, ОММ-5 и др., выделяется весьма мало вредных для здоровья веществ -- силикатной пыли, окислов марганца; эти электроды предпочтительны и по другим показателям.

В создании низкотоксичных электродов, их внедрении в промышленность принимали участие многие организации и в первую очередь такие как Институт электросварки им. Е.О. Патона АН УССР, Московский опытно-сварочный завод, Институт металлургии им. А.А. Байкова АН СССР, Промстальконструкция и другие, а коллективу специалистов во главе с академиком АН УССР И.К. Походней, осуществлявших эту работу, была присуждена Государственная премия СССР в 1971 г,

В настоящее время в странах СНГ выпускается более 500 типов электродов с самыми различными качественными покрытиями, которыми успешно свариваются стали, чугуны, цветные металлы, их сплавы и другие различные материалы. Толщина покрытия современных качественных электродов составляет 1--3 мм (рис. 2.4). Оно представляет собой тонкоизмельченную смесь, состоящую из различных минералов, рудных продуктов, горных пород, ферросплавов, органических и других веществ, скрепленных между собой и с поверхностью металлического прутка водным раствором жидкого стекла. Такое сложное по составу покрытие выполняет ряд функций помимо защитной от вредного воздействия воздуха (кислорода и азота) на жидкий металл, облегчения зажигания дуги и устойчивости ее горения. Составляющие покрытия осуществляют очень важную металлургическую обработку расплавленного металла -- его раскисление, т.е. освобождение в той или иной мере от кислорода, внесение в металл специальных добавок, улучшающих его свойства (легирование), очищение металла от вредных примесей -- серы и фосфора (рафинирование), измельчение размеров кристаллов в процессе затвердевания металла. В зависимости от того, для сварки каких металлов предназначаются электроды, прутки, на которые наносится покрытие, могут быть из различных металлов или сплавов. В электродах общего назначения, широко применяемых для сварки разнообразных стальных конструкций, прутки изготавливаются из стальной малоуглеродистой, почти бескремнистой, холоднотянутой проволоки, для которой характерна повышенная чистота металла, ограничение содержания вредных примесей -- серы и фосфора.

Рис. 2.4. Схема ручной дуговой сварки плавящимся металлическим электродом с покрытием

На рис. 2.4 приведена схема ручной сварки покрытым электродом с изображением продольного сечения зоны сварки.

При ручной дуговой сварке электрод зажимается в специальный держатель, находящийся в руке сварщика, который с помощью кабеля соединяется к источнику питания дуги.

Дуга может питаться как постоянным, так и переменным током, одно- или многофазным, низкой или высокой частоты. При постоянном токе имеет значение полярность электрода. Чаще к электроду присоединяют отрицательный полюс источника тока, а к изделию -- положительный; тогда получают прямую или нормальную полярность, Очевидно, что при питании дуги переменным током полярность электрода будет постоянно меняться с периодом, равным частоте переменного тока.

После возбуждения дуги сварщик начинает ее перемещать в заданном направлении. По мере плавления электрода он подает его в зону сварки для поддержания длины дуги постоянной величины. При расплавлении электрода одновременно плавится и свариваемый металл, в результате формируется сварной шов.

Иногда вместо плавящегося электрода сварщик использует неплавящийся (угольный), поэтому для формирования сварного шва в зону дуги вводится специальный дополнительный присадочный пруток, который, расплавляясь, образует сварной шов. При выполнении сварочных работ сварщик пользуется специальным щитком, защищающим лицо и глаза от сильного светового потока и брызг металла. В щитке имеется окно с темным защитным стеклом, позволяющим наблюдать за зоной сварки и влиять на поведение жидкого металла в сварочной ванне. Теплом дуги расплавляется не только металлический пруток 1 (см. рис. 2.4), но и покрытие 2, и в виде капель 3 переносится в сварочную ванну 4, где перемешивается с расплавленным металлом свариваемого изделия. Покрытие плавится медленнее прутка, поэтому на торце электрода образуется своеобразная втулочка, направляющая поток выделяемых газов и паров в дуге в сторону сварочной ванны, что облегчает отрыв капель от торца электрода. Металл ванны покрывается защитным слоем шлака 5, образующим затем на затвердевшем металле шва 6 шлаковую корку 7, сбиваемую с его поверхности по окончании сварки.

Глубина h (см. рис. 2.4), на которую расплавляется свариваемый металл (глубина проплавления) зависит от режима сварки (силы сварочного тока, скорости перемещения дуги вдоль свариваемых кромок и других параметров) и пространственного положения зоны сварки.

Сварка покрытым электродом может осуществляться во всех пространственных положениях свариваемого участка изделия: в наиболее удобном для сварщика положении -нижнем, на вертикально расположенном участке и, наконец, в потолочном положении, когда поворот изделия для удобства сварки невозможен.

В процессе сварки рука сварщика обычно совершает ряд сложных движений: кроме подачи электрода к изделию и перемещения вдоль свариваемых кромок, сварщик одновременно делает поперечные колебания той или иной формы. От того, насколько он при этом владеет умением поддерживать непрерывность горения дуги и обеспечивать постоянство ведения процесса, зависит стабильность формы и качество сварного шва.

Важной характеристикой качественных электродов являются коэффициент наплавки ан, который показывает, сколько электродного металла под действием сварочного тока в 1 ампер наплавляется в единицу времени. Зная коэффициент наплавки электрода и величину используемого тока, можно легко определить производительность сварки этим электродом:

, (2.3)

где -- производительность наплавки, г/ч; -- коэффициент наплавки, г/Ач; -- величина тока, А.

Коэффициент наплавки у обычных электродов с покрытием лежит в пределах 8 -- 10 г/Ач.

Сварочные же токи для электродов, имеющих диаметр 3 -- 6 мм и используемых при выполнении основного объема работ, составляют 120 -- 350 А, при напряжении дуги 16 -- 30 В. Коэффициент наплавки можно увеличить, если в состав покрытия ввести железный порошок (от 5 до 50 % массы прутка}; тогда коэффициент наплавки возрастает до 12 -- 20 г/Ач, а производительность сварки возрастает в 1,5 -- 2 раза. Первой стала изготавливать подобные электроды голландская фирма ФИЛИПС (1946-1947 гг.). Такие же электроды, содержащие в покрытии 30 -- 50 % железного порошка, выпускается в США, Франции, Бельгии и других странах.

В СССР электроды с железным порошком в покрытии получили широкое распространение в 60-е годы XX в. (электроды ОЗС-3, АНО-1, ОЗС-5, ВН-48 и др.).

Процесс изготовления покрытых электродов включает следующие основные операции:

правку и рубку очищенной проволоки на прутки необходимой длины;

грубое и тонкое дробление (размол) входящих в состав покрытия веществ (компонентов), с их последующим просеиванием на специальных ситах;

изготовление обмазочной пасты;

нанесение обмазки на электродные прутки путем опрессовки;

сушку покрытых электродов с целью удаления из покрытия влаги и придания ему необходимой механической прочности,

В настоящее время имеются крупные специализированные производства по изготовлению электродов мощностью до 60 тыс. т электродов в год. Во многих из них действуют поточные линии, с широкой механизацией и автоматизацией ряда производственных операций. В таких линиях успешно работают высокопроизводительные электродоизготавливающие агрегаты, сушильно-прокалочные конвейерные печи плавильно-отрезные автоматы и другое современное и производительное оборудование.

Каковы достоинства и недостатки ручной дуговой сварки покрытыми электродами?

Несомненным и главным достоинством ее является универсальность и большая маневренность; ручная сварка покрытым электродом может осуществляться не только в любом пространственном положении, но и в любом, недоступном для других способов сварки, месте изделия, при любой толщине свариваемого металла, обеспечивая выполнение швов самой различной протяженности. Вместе с тем большое разнообразие типов и марок покрытых электродов позволяет успешно сваривать и наплавлять самые различные стали и специальные сплавы, чугуны, цветные металлы и сплавы на их основе, получать сварные соединения из них высокого качества. К достоинствам ручной дуговой сварки следует отнести простоту процесса, применение несложного в устройстве и работе оборудования для питания дуги, позволяющего использовать этот способ не только в стенах крупного предприятия, но и на строительных, а также монтажных площадках, в небольших мастерских как городского, так и сельского типа. Вместе с тем ручной дуговой сварке присущи значительные недостатки, важнейшими из которых являются: использование ручного труда рабочих высокой квалификации, низкая производительность процесса вследствие использования небольших величин сварочного тока (чтобы не перегревался пруток электрода) и перерыв процесса из-за необходимости замены электродов по мере того, как они расплавляются.

В практике сварочного производства известны многочисленные попытки приуменьшить названные недостатки ручной дуговой сварки. В результате были разработаны такие способы сварки, как сварка электродами повышенного диаметра (до 10 мм), сварка пучком электродов, сварка с глубоким проваром (или сварка опиранием электрода), сварка лежачим и наклонным электродами и т.д.

Следует, однако, отметить, что все эти и другие приемы не могут ликвидировать главного недостатка ручной дуговой сварки, а именно, применение ручного, не механизированного труда.

Несмотря на известные недостатки ручной дуговой сварки необходимо, тем не менее, каждому будущему инженеру-сварщику овладеть техникой ручной сварки покрытым электродом. Это позволит глубже понять и усвоить многие теоретические курсы, такие, например, как теория сварочных процессов, сварные конструкции, технология дуговой сварки и др. Ни один из других способов дуговой сварки, кроме ручной, не позволяет реально и зримо ощутить и почувствовать, как возбуждается дуга, как происходит плавление металла электрода и изделия, как ведет себя сварочная ванна в различных пространственных положениях, как поддерживается устойчивое горение дуги и т.д.

Вот почему овладение студентами навыками выполнения ручной дуговой сварки является не только желательным, но и необходимым элементом подготовки высококвалифицированного специалиста. Овладение техникой ручной дуговой сварки может осуществляться как в рамках самостоятельной работы студента в лабораториях кафедры, так и в процессе прохождения практик.

Длительное время ручная дуговая сварка была единственным способом соединения (и разъединения) металлов, хотя многие передовые инженеры стремились ликвидировать ручной труд при сварке путем разработки различных устройств и приспособлений с целью механизации процесса.

Начало широкой механизации и автоматизации сварочных процессов было связано с созданием в 1939--1940 гг. под руководством академика Е.О. Патона способа «скоростной автоматической сварки голым электродом под слоем флюса». Этот способ и сегодня остается самым экономичным и высокопроизводительным процессом, обеспечивающим получение сварных швов высокого качества.

В чем же заключается коренное отличие дуговой сварки под флюсом от ручной?

При сварке под флюсом (рис. 2.5) вместо штучных электродов применяется электродная проволока 1 большой длины, свернутая в виде кассеты. Ее подача в зону дуги по мере плавления, а также перемещение самой дуги вдоль свариваемых кромок механизированы и осуществляются сварочным автоматом, имеющим устройство 2 для внесения в зону сварки флюса и отсоса нерасплавившейся его части со шва для возврата в бункер.

Возбуждению дуги предшествует засыпка флюса вдоль свариваемых кромок в виде валика толщиной 50 -- 60 мм. Возникшая при включении автомата дуга 3 между торцом электродной проволоки / и свариваемым изделием 4 оказывается закрытой флюсом: она горит в закрытой полости, образованной расплавленным флюсом, т.е. шлаком 5, в своеобразном газовом пузыре 6. Закрытая полость и возникающее статическое давление слоя флюса на жидкий металл сварочной ванны 7 предотвращают разбрызгивание жидкого металла и нарушения в формировании шва.

Расплавленный флюс-шлак, обладая небольшой плотностью, всплывает на поверхность жидкого металла сварочной ванны, образуя в процессе затвердевания шлаковую корку 8, легко удаляемую со шва 9. Нерасплавленная же часть флюса 10 отсасывается пневмоустройством 11 автомата в бункер 2 для повторного использования.

Рис. 2.5. Схема сварки под флюсом:

А -- сварочная головка; Б -- механизм перемещения; I, II, III -- поперечные сечения в различных зонах шва

Что же представляет собой флюс?

Флюс -- это сыпучий, зернистый, т.е. гранулированный материал, с величиной зерен (гранул) 1--2 мм.

Современные флюсы разнообразны, различаются назначением, составом и свойствами. В зависимости же от способа изготовления различают флюсы плавленые и неплавленые,

Плавленые флюсы получают путем сплавления различных веществ (минералов, рудных продуктов и др.) в печах, поэтому готовый плавленый флюс относится к сложным силикатам, близким по свойству к стеклу. Шлаки, ими образуемые, в зоне сварки выполняют в основном защитную роль, изолируя жидкий металл от контакта с воздухом, будучи в металлургическом отношении малоактивными.

Неплавленые флюсы, к которым относятся прежде всего так называемые керамические, изготовляют без сплавления входящих в их состав порошкообразных веществ, путем связывания такой смеси жидким стеклом (силикатным клеем) с последующей грануляцией в зерна размером 1 -- 3 мм. Для этого осуществляют протирку густой массы через соответствующие сита, с определенным размером ячейки, а затем просушивают и прокаливают флюс. Подобные флюсы содержат в своем составе (как и электродные покрытия) неокисленные, свободные элементы -- металлы или их сплавы (ферросплавы), что позволяет при сварке под таким флюсом активно вмешиваться в ход химических реакций в жидкой сварочной ванне, осуществлять раскисление, легирование металла шва, очищать его от вредных примесей, воздействовать на структуру шва, т.е. получать в итоге сварные швы нужного состава и свойств.

Главным узлом сварочного автомата является сварочная головка А (см. рис. 2.5), выполняющая операции по возбуждению дуги, ее поддержанию и прекращению горения. Кроме нее автомат имеет ходовой механизм Б для перемещения головки вдоль свариваемых кромок по специальным направляющим рельсам, устройство для подъема и опускания головки, катушку с намотанной электродной проволокой, а также флюсоаппарат, обеспечивающий подачу флюса в зону сварки и отсос неиспользованной его части. Роль сварщика, работающего со сварочным автоматом, сводится лишь к управлению процессом сварки при помощи пульта управления, корректора.

При включении автомата ведущие ролики сварочной головки начинают вращаться и толкают электродную проволоку, к которой они плотно прижаты, вниз -- в токоподводящий мундштук. Токоподводящий мундштук подсоединен проводом к одному из полюсов источника питания сварочной дуги (см. рис. 2.5), Другой полюс ИП соединен с изделием.

Поскольку подвод тока к проволоке через мундштук производится всего лишь в нескольких сантиметрах от ее конца, исключается значительный нагрев этого участка, называемый вылетом электрода, джоулевым теплом, что позволяет применять для такой сварки, в отличие от ручной, повышенный ток.

Так как дуга, находящаяся под флюсом, невидима, это исключает возможность визуального наблюдения за положением конца электрода. Контроль над процессом сварки ведут по приборам и указателю положения электрода относительно кромок свариваемого изделия.

Для корректировки конца электродной проволоки относительно кромок у автомата имеются корректоры, управляемые вручную или с помощью автоматических устройств.

По способу подачи электродной проволоки различают автоматы с зависимой от напряжения дуги и ее длины скоростью подачи электродной проволоки и автоматы с постоянной скоростью подачи электродной проволоки. Автоматы первого типа имеют довольно сложную схему автоматического регулирования дуги, в которой использована зависимость скорости подачи проволоки от напряжения дуги и ее длины. Появление второго типа автоматов связано с открытием в 1942 г. профессором В.И. Дятловым явления саморегулирования дуги. Оно заключается в самопроизвольном восстановлении длины дуги, нарушенной под действием случайных факторов. Если, например, в процессе сварки длина дуги внезапно уменьшилась (при прохождении участка с прихваткой), то самопроизвольно увеличится скорость плавления проволоки и быстро восстановится нормальная длина дуги и т.д. Разнообразные по конструкции автоматы этого типа отличаются большой надежностью, простотой управления и обслуживания, не требуют применения сложных автоматических механизмов для регулирования процесса сварки. Большая серия подобных автоматов разработана и продолжает разрабатываться Институтом электросварки им. Е.О. Патона.

В зависимости от того, каким образом производится перемещение дуги вдоль свариваемых кромок изделия, сварочные автоматы разделяются на три группы: подвесные автоматы, самоходные автоматы и сварочные тракторы.

Подвесные автоматы или подвесные сварочные головки обычно используются в специализированных установках (например, трубосварочных станах). Такая головка закрепляется неподвижно, изделие же от отдельного привода получает движение со скоростью, равной скорости сварки.

Самоходные автоматы, или самоходные сварочные головки, имеют механизм движения по рельсовому пути и при сварке перемещаются по этому пути.

Большое распространение в сварочном производстве получили сварочные тракторы -- легкие, компактные самоходные автоматы, которые могут перемещаться непосредственно по изделию, не требуя стационарных устройств с рельсовыми путями.

Сварочные автоматы успешно используются в массовом и серийном производстве изделий для выполнения прямолинейных и круговых швов большой протяженности.

Рис. 2.6. Схемы различных видов сварки под флюсом:

а -- одной дугой; б -- сдвоенным электродом; в -- двухдуговой от двух источников питания; г -- ленточным электродом

Основным видом автоматической сварки под флюсом является сварка одной дугой, когда подается в зону дуги одна электродная проволока (рис. 2.6, а).

Однако возможна сварка двумя и более дугами, с подачей двух и более проволок. При многоэлектродной сварке все электродные проволоки подсоединены к одному полюсу источника питания (рис. 2.6, б), а при многодуговой -- каждая из проволок получает питание от отдельного источника (рис. 2.6, в). При этом возможна сварка с одной общей сварочной ванной, куда поступает жидкий металл от всех плавящихся проволок, или сварка так называемыми раздвинутыми дугами, когда каждая дуга создает свою сварочную ванну, а следующая за ней дуга перекрывает своей ванной часть предыдущей. Существуют также виды автоматической сварки с использованием нескольких сварочных головок, действующих одновременно на разных участках шва, и другие. Все эти виды автоматической сварки под флюсом преследуют одну главную цель: еще более повысить производительность сварки. Так, если однодуговая сварка под флюсом производительней ручной в 4 -- 6 раз, то многодуговая -- уже в 15 -- 20 раз.

Весьма перспективным является применение ленты вместо электродной проволоки (рис. 2.6, г). Электродная лента обычно имеет толщину до 2 м и ширину до 40 мм.

Горящая дуга быстро перемещается поперек ленты, равномерно ее оплавляя. Меняя форму ленты можно существенно влиять и на форму шва, т.е. глубину проплавления и ширину. Можно вместо одной ленты применять несколько лент (как и проволок), что особенно эффективно при выполнении наплавочных работ для получения широкослойной наплавки на поверхность изделия. Менее известна и разработана сварка ленточным электродом, хотя этот процесс, несомненно, имеет большое будущее.

Нетрудно увидеть преимущества автоматической сварки под слоем флюса. Они сводятся к следующему:

высокая производительность процесса, обусловленная возможностью применять значительный по величине ток (в сравнении с открытой дугой -- в 10 раз и более);

закрытая и мощная дуга под флюсом обеспечивает лучшее использование сварочного тока -- значительное проплавление свариваемого металла, позволяющее уменьшать разделку кромок или вообще ее не делать. Следствием этого является существенное сокращение расхода электродного металла и электроэнергии. Вместе с тем, уменьшаются и потери металла на угар, разбрызгивание, огарки (неизбежные при ручной сварке);

стабильное, хорошее качество и формирование сварных швов;

высокий уровень механизации и возможность комплексной автоматизации сварочного процесса;

улучшение условий труда, так как нет необходимости в защите глаз и лица сварщика от вредного действия дуги.

Однако у способа имеются и недостатки:

возможность сварки только в нижнем положении при наклоне изделия не более, чем на 10-15° от горизонтали, с целью предупреждения отекания расплавленного металла и флюса, нарушающего правильное формирование шва;

невозможность (или нецелесообразность) сварки тонколистового металла толщиной менее 3 мм, швов малого калибра;

сложность и громоздкость сварочного оборудования, уменьшающих маневренность способа;

необходимость более тщательной (в сравнении с ручной сваркой) подготовки кромок и более точной сборки деталей под сварку.

Ряд перечисленных недостатков и ограничительных факторов, присущих сварке под флюсом, могут быть полностью или частично устранены при использовании такого важного вида дуговой сварки, как сварка в защитных газах. В настоящее время дуговая сварка в защитных газах занимает одно из ведущих мест в сварочном производстве и продолжает развиваться и совершенствоваться.

При этом виде сварки вместо флюса используется защитный газ, подаваемый в зону горения дуги под небольшим избыточным давлением, защищающим расплавленный металл от контакта с воздухом (рис. 2.7).

Для защиты зоны сварки применяют три группы газов: инертные (аргон, гелий), активные (углекислый газ, водород, азот и др.) и смеси газов (, , , и др.).

Выбор защитного газа определяется особенностями свариваемого металла, требованиями к свойствам сварных соединений, эффективностью процесса и другими соображениями.

Первым, высказавшим в конце XIX в. идею о сварке в защитном газе, был Н.Н. Бенардос. Реализацию же этой идеи в 20-х годах XX в, осуществили американские инженер Александер и физик, тоже инженер, Лэнгмюр, используя при сварке стержневым электродом в качестве защиты смесь газов. Значительно позднее, в 40-х годах XX в. в СССР и в США, почти одновременно, появляется новый вид дуговой сварки -- в среде инертных газов.

Газ

Рис. 2.7. Схема дуговой сварки в защитных газах при использовании неплавящегося (а] и плавящегося (б) электрода:

1 - неплавящийся (а) и плавящийся (6) электроды; 2 - токоподводящий мундштук; 3 -- изолирующая втулка; 4 ~- сопло; 5 -- свариваемое изделие; 6 -- присадочный пруток

В СССР этот процесс разрабатывался в НИИАТ (Научно-исследовательский институт авиационной технологии (г. Москва)), сначала с применением неплавящегося вольфрамового электрода, а в конце 40-х годов XX в. -- и плавящегося. На протяжении примерно 10 лет в ряде организаций (ИЭС им. Е.О. Патона, МВТУ им. Баумана, ЦНИИТМАШе, МАТИ (Московский авиационно-технологический институт) и др.) делаются безуспешные попытки использовать при сварке в СО2 плавящийся электрод, но лишь в 1952 г. в ЦНИИТМАШе сотрудниками К.В Любавским и Н.М. Новожиловым получены положительные результаты: они применили не обычную сварочную, а специальную проволоку.

Использование в качестве защитной среды смесей газов -- инертных и активных -- оказалось в ряде случаев более эффективным, так как за счет активного воздействия на ход реакций, протекающих в металле, удается получить более высококачественные сварные швы. Более совершенная защита свариваемого металла создается при использовании местных защитных устройств, специальных камер с контролируемой атмосферой -- для ручной и механизированной сварки, и так называемых обитаемых камер, в которых сварка осуществляется после создания соответствующей среды -- сварщиком, одетым в скафандр.

Результатом большой совместной работы коллективов МВТУ им, Баумана и МЭИ (Московский энергетический институт), начатой в 1961 г., явилось применение для дуговой сварки вакуумной защитной среды ( мм рт. ст.), создаваемой в специальных вакуумных камерах. В такой среде содержание азота и кислорода на один-два порядка ниже, чем при сварке в аргоне высшей чистоты.

Для сварки неплавящимся электродом стали применять угольные (графитовые) и вольфрамовые стержни.

Уголь, или графит, относится к нерасплавляемым хрупким материалам; при высокой температуре дуги такие электроды интенсивно испаряются, не расплавляясь, подвергаются окислению и поэтому довольно быстро расходуются.

Применение электродов из вольфрама экономически выгоднее, несмотря на высокую стоимость этого металла. Вольфрам является самым тугоплавким из металлов (), поэтому такой электрод лишь медленно оплавляется и испаряется, Для защиты от окисления и увеличения срока службы такого электрода сварку осуществляют в струе защитного газа, которым может быть водород или инертные газы -- аргон, гелий.

Сущность процесса сварки неплавящимся электродом заключается в следующем. Дуга прямого действия (рис. 2.7, а) возбуждается и горит между вольфрамовым электродом 1 и свариваемым изделием 5. Вся зона сварки (конец электрода, дуга и ванночка расплавленного металла) защищается от контакта с воздухом инертным газом, подаваемым в виде потока, концентрически направленного относительно электрода.

Сопло 4 служит для формирования и нужного направления потока защитного газа. Все названные элементы образуют так называемую горелку -- основной рабочий инструмент сварщика. Такая горелка легка, компактна и удобна в работе. Поскольку электрод является неплавящимся, в большинстве случаев для нужного формирования шва в зону сварки вносится присадочный металл 6, подаваемый сварщиком. Однако возможна сварка и без внесения присадки сварщиком, тогда нужное образование шва обеспечивается за счет расплавления специально подготовленных под сварку отбортованных кромок стыка, либо за счет расплавления предварительно уложенного на свариваемый стык присадочного металла.

Сварка в защитных газах неплавящимся электродом имеет много разновидностей, одна из которых, например, называется сваркой пульсирующей дугой или импульсно-дуговой сваркой.

При сварке пульсирующей дугой, разработанной в СССР в 1961 г. (авторы А.В. Петров, Г.А. Славин), ток дуги пульсирует от минимума во время паузы до максимума во время импульса. Такое питание дуги током позволяет выполнять сварку весьма тонких элементов со швами, расположенными в различных пространственных положениях, а также управлять процессом кристаллизации металла шва с целью получения высокого их качества.

Чаще всего сварка неплавящимся электродом в инертных газах применяется при изготовлении изделий из алюминия, магния и их сплавов, сплавов на основе никеля, некоторых специальных сталей. Для сварки особо активных и тугоплавких металлов, таких как титан, молибден, ниобий, тантал, цирконий и других, требуется защита от контакта с воздухом не только самой сварочной ванны, но и значительной части прилегающего к ней по обе стороны нерасплавленного металла, нагреваемого до высоких температур, при которых эти участки могут взаимодействовать с воздухом и приобретать плохие свойства. В этом случае, в зависимости от степени ответственности изделия, прибегают к использованию специальных защитных кожухов -- небольших передвижных камер или более совершенных камер с контролируемой атмосферой, обитаемых камер, в которых и осуществляется сварка.

Сварка в защитных газах плавящимся электродом намного опережает по объему применения сварку неплавящимся электродом (примерно 90 % объема -- сварка плавящимся электродом).

При сварке плавящимся электродом дуга возбуждается между изделием и электродом, который по мере расплавления подается в зону дуги специальными подающими роликами (рис. 2.7, б). Область использования плавящегося электрода в защитном инертном газе примерно такая же, что и при сварке вольфрамовым электродом, -- получение швов различной протяженности и конфигурации на изделиях из цветных металлов, высоколегированных сталей, титановых сплавов и др. И в этом случае успешно применяется импульсно-дуговая сварка, позволяющая получать сварные соединения не только в нижнем, но и в вертикальном и потолочном положениях. В Институте электросварки им. Е.О. Патона создано несколько разновидностей этого процесса.

Из активных защитных газов наиболее широко применяют для сварки плавящимся электродом углекислый газ, использование которого вначале было безуспешным. Б чем же причины первых неудач по использованию углекислого газа в качестве защитной среды? Б зоне горения дуги углекислый газ, оттесняя воздух, вместе с тем является активным окислителем, так как под действием высокой температуры дуги легко распадается на окись углерода (СО) по реакции:

Поэтому при сварке в такой среде углеродистой стали в жидком металле сварочной ванны протекает окисление ряда важных элементов, входящих в состав стали и определяющих ее свойства, таких как кремний, марганец, углерод. Окисление кремния и марганца создает пленку шлака на поверхности металла; при окислении же углерода в металле образуются пузырьки окиси углерода СО, которые частью успевают покинуть затвердевающий металл ванны, а частью остаются в нем, являясь причиной пор в шве.

Оказалось, что если в сварочную ванну внести дополнительные порции кремния и марганца, они, будучи сильными раскислителями, затормаживают взаимодействие углерода с кислородом, а значит и газообразование, вызывающее пористость швов.

Вот почему, установив это, К.В. Любавский и Н.М. Новожилов (ЦНИИТМАШ) предложили вместо обычной бескремнистой маломарганцовистой сварочной проволоки применять для сварки в специальную кремнемарганцовистую проволоку, обеспечивающую внесение в жидкий металл достаточных количеств кремния и марганца, необходимых для получения качественных сварных швов.

Разновидностями этого процесса, успешно применяемыми в промышленности, повышающими экономическую эффективность сварки, следует назвать сварку электрозаклепками (ЦНИИТМАШ), сварку с принудительным формированием вертикальных швов (Институт электросварки им. Е.О. Патона), сварку с добавками к углекислому газу кислорода (до 30 %), а также инертных газов, повышающих устойчивость горения дуги, проплавляемость металла, улучшающих внешний вид швов и пр.

Для сварки плавящимся электродом создана большая группа полуавтоматов и автоматов. Полуавтоматы шланговые имеют механизм подачи проволоки толкающего, тянущего или смешанного типа. Полуавтоматы отличаются портативностью, легкостью -- в отличие от предназначенных для сварки под флюсом. Новые образцы полуавтоматов для сварки плавящимся электродом разрабатываются с целью обеспечения большей устойчивости процесса сварки за счет лучшей стабилизации скорости подачи проволоки, а также максимального повышения надежности в работе небольших по размерам и легких горелок.

В последнее десятилетие отмечается заметное расширение объема применения сварки в защитных газах, особенно плавящимся электродом, что объясняется большой универсальностью и маневренностью процесса в сочетании с высокой производительностью, легкостью его механизации и автоматизации.

Сварка в защитных газах позволяет:

успешно выполнять швы в любом пространственном положении, что дает возможность использовать сварочные работы;

выполнять стыковые швы «на весу», т.е. без каких-либо предварительных подварок или применения подкладок;

непосредственно наблюдать и контролировать движение дуги по свариваемому участку, образование шва, так как зона сварки открыта.

Кроме того, отсутствует шлаковая корка на шве, а значит и затраты времени на ее удаление.

К недостаткам этого процесса следует отнести следующие:

при выполнении больших по размерам швов производительность примерно вдвое меньше, чем при сварке под флюсом;

затруднена сварка на открытом воздухе при ветре -- из-за сдувания защитного газа;

при сварке в углекислом газе в общем случае наблюдается разбрызгивание металла, требующее по окончании сварки удаления брызг с поверхности металла;

необходимость применения защитных средств против светового и теплового излучения дуги.

Наиболее рационально использовать сварку в защитных газах при изготовлении изделий из металла небольшой толщины (до 10 мм), когда применение сварки под флюсом оказывается невыгодным или невозможным.

Сварка в углекислом газе заняла ведущее место в судостроении, транспортном и сельскохозяйственном машиностроении, в производстве трубопроводов, при выполнении различных монтажных работ -- в процессе изготовления листовых и решетчатых конструкций, установке переборок в морских и речных судах, в поточном производстве баллонов, баков, бочек и прочих сосудов, различных машиностроительных деталей. В углекислом газе сваривают изделия из малоуглеродистой, легированных, а в некоторых случаях и высоколегированных сталей, чугуна.

Инертные газы используют при сварке сосудов и аппаратов для химической промышленности, различных вакуумных камер, соединений трубопроводов для агрессивных жидкостей и других изделий, изготавливаемых из специальных сталей, легких и цветных металлов, активных и тугоплавких металлов. Особое место среди способов дуговой сварки занимает сварка самозащитной проволокой, разработанной практически одновременно в 1958 г. в СССР и США. При этом способе защита металла шва от вредного воздействия воздуха и его легирование достигаются только за счет процессов, сопровождающих плавление специальной электродной проволоки, без дополнительного использования флюса или какого-либо защитного газа.

Наиболее просто это достигается при использовании так называемых порошковых проволок, представляющих собой металлическую оболочку / (рис. 2.8, а) и сердечник 2 в виде смеси порошков различных материалов. Попадая в зону дуги 4, порошок частично расплавляется, частично просыпается в сварочную ванну, что обеспечивает надежную защиту металла шва 6 от воздуха (за счет образования газовой среды) и шлаковой корки 5 и его легирование. Из-за малой электропроводности сердечника дута возбуждается между металлической оболочкой и изделием (рис. 2.8, а). Конструкция порошковой проволоки может быть самой различной (1, 2, 3, 4 на рис. 2.8, б) и зависит от конкретных требований к сварочно-технологическим свойствам самозащитных проволок.

Рис. 2.8. Схема процесса сварки порошковой проволокой (а) и конструкция порошковой проволоки (б).

Многообразие способов и техники дуговой сварки не исчерпывается рассмотренными способами в этой главе.

В дальнейшем при изучении специальных дисциплин студенты рассматривают их достаточно подробно, здесь же мы остановимся еще на одном варианте использования дуги в сварочном производстве, а именно на плазменной сварке и резке. При плазменной сварке и резке источником нагрева служит дуга, столб которой принудительно обжат по диаметру, что приводит к резкой концентрации удельной тепловой мощности и повышению температуры плазмы дуги.

Основным инструментом при плазменной сварке и резке служит плазмотрон, являющийся генератором плазмы, т.е. ионизированного газа с высокой температурой.

Впервые сжатую водяным вихрем дугу наблюдали в начале 20-х годов XX в. Гердиен и Лотц (Германия). Однако лишь в середине 50-х годов сжатая дуга нашла практическое применение: в США был разработан способ резки такой дугой толстолистового алюминия.

В СССР работы по использованию сжатой дуги в сварочной технике начались с 1956 г. Исследования и разработки в этой области были сосредоточены в ряде научно-исследовательских институтов: ВНИИАВТОГЕНе, НИАТе, институте металлургии им. А.А. Байкова, институте Электросварки им. Е.О. Патона, ВНИИЭСО (Всесоюзный научно-исследовательский институт электросварочного оборудования (г. Санкт-Петербург)).

В отличие от обычной дуги, горящей свободно, когда для плавления металла используется главным образом тепло, выделяемое в активных пятнах (анодное и катодное пятна), в сжатой дуге роль активных пятен несущественна; основным источником тепла для сварки (или резки) служит искусственно удлиняемый и сжатый столб дуги, превращаемый в ярко светящуюся струю плазмы или поток плазмы -- с высокой плотностью энергии.

Дуговую плазменную струю для сварки и резки получают по двум основным схемам (рис. 2.9). При плазменной струе прямого действия (рис. 2.9, а) изделие включено в сварочную цепь дуги, активные пятна которой располагаются на вольфрамовом электроде / и изделии 5. Плазменная струя косвенного действия (рис. 2.9, 6) образуется при дуговом разряде, происходящем между вольфрамовым электродом 1 и внутренней боковой поверхностью сопла 3.

Рис. 2.9. Принципиальные схемы плазмотронов прямого действия (а) и косвенного действия (б):

1 -- вольфрамовый электрод; 2 -- электроизоляционная втулка; 3 -- сопло; 4 -- плазменная струя; 5 -- изделие, частично разрезанное плазмой.

Как же работает плазмотрон? Внутри корпуса плазмотрона имеется камера, в которой расположен вольфрамовый электрод 1 и туда подается под некоторым давлением плазмообразующий газ (аргон, гелий и др.). Нижняя часть корпуса, называемая соплом (3), образует узкий канал для выхода плазмы. Сопло в процессе работы охлаждается проточной водой. Так как при нагреве дуговым разрядом плазмообразующего газа его объем увеличивается в 50--100 и более раз (при одновременной ионизации), создаются высокие, близкие к сверхзвуковым, скорости истечения плазменной струи из сопла. Дуговая плазменная струя -- интенсивный источник теплоты, используемый в настоящее время для нагрева, сварки и резки как электропроводных металлов (любых), так и неэлектропроводных материалов, таких как стекло, керамика и др. Чрезвычайно перспективно применение сжатой дуги в наплавочных работах и в процессах напыления (см. ниже главу 4).

Особой областью применения сжатой дуги является нагрев деталей под пайку и термообработку. Сжатую дугу успешно используют в черной металлургии. Здесь мощными плазмотронами осуществляют переплав металлических слитков для получения особо чистого, лишенного вредных примесей металла.

В заключение раздела отметим, что дуговой разряд, открытый В.Б. Петровым в 1802 г., не исчерпал еще всех своих возможностей и областей применения, включая и область сварочного производства.

3.2 Электрошлаковая сварка

Разработка этого принципиально нового процесса была осуществлена в начале 50-х годов прошлого века сотрудниками ИЭС им. Е.О. Патона АН УССР во главе с Г.З. Волошкевичем при творческом содружестве с заводами НКМЗ (Новокраматорский машиностроительный завод), Таганрогским «Красный котельщик».

Важнейшим следствием всех этих работ стало решение проблемы качественной и высокопроизводительной однопроходной сварки металла практически неограниченной толщины. Эффективность процесса оказалась огромной. По новой технологии стали сваривают крупногабаритные детали в судостроении (корпуса, несущие конструкции), в химическом и тяжелом машиностроении (сосуды, станины мощных прессов, валы крупных гидротурбин, прокатное оборудование, реакторные колонны и др.), в котлостроении и мостостроении. Этот процесс нашел применение в наплавочных работах, в ремонтном деле, при сварке арматуры, рельсов. Оказалось, что весьма эффективно различные литые и кованые крупногабаритные детали изготовлять путем соединения отдельных частей с помощью электрошлаковой сварки. Известно, что при расплавлении флюса образуется шлак, который является проводником электрического тока. При пропускании электрического тока через шлак в нем будет выделяться, в соответствии с законом Джоуля-- Ленца, теплота. Этот принцип и лежит в основе электрошлаковой сварки (рис. 2.10). Сварка обычно выполняется при вертикальном расположении деталей, собираемых с зазором величиной b.

Рис. 2.10. Схема электрошлаковой сварки:

1 -- свариваемые пластины; 2 ~ токоподводящий мундштук; 3 --.электрод; 4 - формирующие ползуны; 5 - шлаковая ванна; 6 - металлическая ванна; 7 -- шов; 8 -- подающие ролики.

В пространство, образованное свариваемыми кромками деталей / и формирующими ползунами 4, засыпается вначале небольшая порция флюса, затем возбуждается дуга между плавящимся электродом 3 и изделием, что приводит к расплавлению флюса и образованию шлаковой ванны 5 требуемого объема и глубины, дуга при этом гаснет, но сварочный ток вследствие проводимости шлака будет продолжать проходить между электродом 3, погруженным в шлак, и изделием 1, вызывая сильный разогрев шлаковой ванны. За счет тепла шлаковой ванны происходит оплавление свариваемых кромок деталей и расплавление электрода. Расплавленный металл электрода в виде капель и металл расславившихся кромок изделия стекают на дно ванны, образуя ванну расплавленного металла б (металлическую ванну).

Страницы: 1, 2, 3


© 2010 Рефераты