Ускорения всех точек механизма найдены. Ускорения для остальных положений механизма определяются аналогично. Значения ускорений сводим в таблицу 1.2.
Таблица 1.2- Значения ускорений.
Ускорения, м/с2
Положение механизма
1
3
5
7
9
11
0
aA
54,4
54,4
54,4
54,4
54,4
54,4
54,4
aA'Ak
14,37
7,74
12,02
7,55
24,7
23,56
0
aA'O2n
3,88
13,84
10,74
0,775
20,24
7,9
0
ac'
15,3
5
7
24
40,6
48,1
32
aCC'k
0,75
0,5
1,25
0,00
3,45
1,9
0
aC
16,45
6,25
8,75
26,5
41,8
50,35
34
1.5 Диаграмма движения входного звена
Диаграмму перемещения S-t строим используя полученную из плана механизма траекторию движения точки С. Диаграммы скоростей V-t и ускорений а-t определяются из полученных 12-ти планов скоростей и планов ускорений.
Масштабные коэффициенты диаграмм
Кs=0.0025 (м/мм)
КV=0.05 (мс-1/мм)
Ка=0,5 (мс-2/мм)
1.6 Определение угловых скоростей и ускорений
?1==3,14?150/30=15,71 (рад/с)
?3==3,46/280?0,0025=4,94 (рад/с)
?1=0 (рад/с-2)
?3==14,88/280?0,0025=21,26 (рад/с-2)
1.7 Определение ускорений центров масс звеньев механизма
Ускорения центров масс звеньев механизма определяем из планов ускорений.
aS'=Ka?РаS3=0.5*45=22,5 м/с2
Определяем относительные угловые скорости.
?10= ?1=15,71 рад/с;
?30= ?3=4,94 рад/с;
?12= ?1- ?3=10,77 рад/с;
?45= ?3=4,94 рад/с;
1.8 Аналитический метод расчёта механизма
Исходные данные:
= 625 мм;
= 15,71 рад/с;
= 220 мм;
= 41,530;
= 308 мм;
= 20,760;
Расчет ведется для первого положения кулисы:
;
В проекциях на координатные оси:
;
Разделим второе уравнение ED Equation.3
;
Берем производную от левой и правой части:
Угловая скорость кулисы:
Угловое ускорение кулисы:
Составим векторное уравнение:
Проектируем на оси координат:
;
;
;
;
;
Расчет скоростей и ускорений для первого положения механизма.
Угловая скорость кулисы:
Угловое ускорение кулисы:
;
рад/с2 ;
Скорость точки С :
;
;
м/с;
Ускорение точки C :
;
рад/с2;
2 Силовой анализ рычажного механизма
2.1 Определение сил инерции
Исходные данные:
1=15,71 рад/с;
Q=3450 Н;
m5=35 кг;
m3'=12 кг;
m3''=30 кг;
Определим силы инерции:
U5=-m5?aC;
U5= m5?PaC?Ka;
U5=35?30,6?0,5=535,5 (Н);
U3'=-m3'•aS3';
U3'=m3'?PaS'?Ka;
U3'=12?45?0,5=270 (Н);
U3''=-m3''•aS3'';
U3''=m3''?PaS''?Ka;
U3''=30?17?0,5=255 (Н);
Определим веса звеньев:
G5=m5?g;
G3'=m3'?g;
G3''=m3''?g;
G5=35?9,8=343,35 (Н);
G3'=12?9,8=117,72 (Н);
G3''=30?9,8=294,3 (Н);
Сила полезного сопротивления Q=3450 Н.
Разбиваем механизм на группы Ассура в соответствии с формулой строения I(0,1)>II(2,3)>II (4,5). Начинаем силовой рассчёт самой удалённой от кривошипа диады.
2.2 Расчёт диады II (4,5)
Выделим из механизма диаду 4-5 и нагружаем её силами. Составляем уравнение равновесия диады 4-5:
?Р(4,5)=, R50+Q+G5+U5+R43=0 (1)
Уравнение содержит два неизвестных- модули реакций R50 и R43, поэтому оно решается графически. Строим план сил по уравнению равновесия (1).
Для построения плана сил выбираем масштаб сил Кр
Кр==3450/172,5=20 н/мм
Из плана сил определяем реакции:
R50= R50 Кр=66?20=1320 Н;
R43= R43 Кр=221?20=4420 Н;
2.3 Расчёт диады II (2,3)
Выделим диаду 2-3 и нагрузим её силами. Действие отброшенных звеньев 1,0 на третье заменяем действием реакций связей R21 и R30, которые требуется определить. Реакцию R21 направляем перпендикулярно линии движения ползуна, модуль неизвестен. Реакция R30 в шарнире О2 неизвестна ни по модулю ни по направлению; на схеме направляем её произвольно. Действие отброшенного звена 4 на третье известно: Реакция R34 равна по величине и противоположно направлена реакции R43, которая уже определена из плана сил диады II (4,5). Силы тяжести G3' и G3'' наносим на диаду в центрах масс стержней S3' и S3''. Силы инерции U3' и U3'' прикладываем в точках К' и К'', расположенных на расстоянии 2/3 длин стержней. Силы инерции направляем противоположно ускорениям центров масс согласно плана ускорений.
Составляем условия равновесия диады II(2,3):
?Р(2,3)=0, R21+G3'+U3'+G3''+U3''+R34+R30=0 (2)
Данное уравнение содержит три неизвестных: модуль реакции R21, модуль и направление реакции R30. Значит уравнение (2) графически не решается. Реакция R21 может быть определена аналитически из уравнения моментов сил относительно точки О2.
R21=(270?233-117,72?53+255?102-294,3?74+4500?132)/280=2539 Н
Теперь уравнение (2) содержит два неизвестных, а следовательно решается графически.
Строим план сил диады II(2,3) по уравнению (2). Считаем отрезки плана сил:
= U3'/Кр=270/20=13,5 мм.
= U3''/ Кр=255/20=12,75 мм.
= R21/ Кр=2539/20=126,95 мм.
= G3'/ Кр=117,72/20=5,8 мм.
= G3''/ Кр=294,3/20=14,7 мм.
Согласно уравнению (2) строим сумму векторов сил, откуда находим:
R30= ?Кр=274?20=5480 Н.
2.4 Расчёт кривошипа
Силовой расчёт кривошипа состоит в определении реакции стойки на кривошип R10 и уравновешивающей силы Ру, имитирующей действие силы со стороны двигателя.
Реакция R21 известна, так как R12= R21. Величина Рур определиться из уравнения моментов сил относительно точки О1 кривошипа.
?М О1 (зв.1)=0, Рур?АО1-R12?hR12=0
Рур'= R12?hR12/ АО1=2539 40/88=1154 Н
Реакция стойки на кривошип R10 определиться из условия равновесия кривошипа:
P(кр)=R21+Py+R10=0 (3)
По уравнению (3) строим план сил кривошипа, откуда определяем искомую реакцию R10
R10= R10?Кр=110?20=2200 Н.
2.5 Определение уравновешивающей силы методом Жуковского
Уравновешивающую силу можно определить с помощью план скоростей по методу рычага Жуковского.
Строим повёрнутый на 90?план скоростей и приложим к нему все внешние силы, действующие на механизм. План скоростей рассматриваем как жёсткий рычаг с опорой в полюсе. Рычаг находится в равновесии под действием приложенных сил.
Составляем уравнение равновесия рычага в форме суммы моментов сил в форме суммы моментов сил относительно полюса плана скоростей.
Потери мощности в поступательных кинематических парах:
N23=R23?f'?VA'A=2539?0,132?1,65=553 Вт
N34=R34?f'?VC'C=4420?0,132?0,85=495 Вт
N50=R50?f'?VC=1320?0,132?0,95=165,5 Вт
Суммарная мощность трения:
Nтр=?Ni=N10+N12+N30+N45+N23+N34+N50
Nтр=114,5+90,2+89,3+72,05+553+495+165,5=1579,2 Вт
Мгновенная потребляемая мощность двигателя:
N=NРу+Nтр
N=4058,58+1579,2=5637,78 Вт
2.7 Определение кинетической энергии и приведенного момента инерции механизма
Кинетическая энергия механизма равна сумме кинетической энергии звеньев:
Тмех=?Тi
Для механизма насоса с заданными параметрами кинетическая энергия звена равна:
?Тi=Т3+Т5=
Где
JO2'==12?0,352/3=0,49 кг?м2
JO2''==30?0,1552/3=0,24 кг?м2
Т3=(0,49+0,24)?4,942/2=8,9 Дж
Т5=35?0,95/2=16,62 Дж
Тмех=8,9+16,62=25,52 Дж
За звено приведения обычно выбирают ведущее звено. Так как у исследуемого механизма ведущим звеном является кривошип, то кинетическая энергия определится по формуле:
Tпр=
Откуда находим приведенный момент инерции:
Jпр=
Jпр=2?25,52/15,712=0,2 кг?м2
3 Геометрический расчет зубчатой передачи. Проектирование планетарного механизма
3.1 Геометрический расчет зубчатой передачи
Исходные данные:
Число зубьев шестерни Z5=11;
Число зубьев колеса Z6=25;
Модуль m=6 мм;
Нарезание проводится методом обкатки инструментом реечного типа, который профилируется на основе исходного контура по ГОСТ 13755-81 и имеет следующие значения: угол профиля ; коэффициент высоты головки ; коэффициент радиального зазора ;
14) Строим зубчатую передачу с масштабным коэффициентом Kl=0,00025 м/мм;
15) Проверяем коэффициент торцевого перекрытия
а) аналитический метод:
1,57
б) графический метод:
где - длина активной линии зацепления.
3.2 Определение передаточного отношения планетарной ступени и подбор числа зубьев колес
Исходные данные:
nкр=150 мин-1;
nдв=1500 мин-1;
Z5=11;
Z6=25;
знак передаточного отношения привода (-)
Составляем общее передаточное отношение механизма:
Рассчитаем передаточное отношение и через исходные данные:
Из исходного уравнения определяем передаточное отношение планетарной ступени:
;
Составляем формулу Виллиса для планетарной передачи:
;
;
Запишем через числа зубьев передаточное отношение обращенного механизма:
;
Подбираем числа зубьев:
; ;
Z1+Z2=Z4-Z3;
Z1+Z2=30+30=60
Z3+Z4=85-25=60
Z1=30, Z2=30, Z3=25, Z4=85
По выбранным числам зубьев определяем размеры колес:
d=m?Z;
d1=6?40=240 мм;
d2=6?40=240 мм;
d3=6?25=150 мм;
d4=6?85=510 мм;
d5=6?11=66 мм;
d6=6?25=150 мм
Масштабный коэффициент построения Кl=0,001 м/мм;
Для построения плана скоростей редуктора определяем скорость точки А:
м/с;
Строим план скоростей. Масштабный коэффициент плана скоростей
мс-1/мм;
3.3 Определение частот вращения зубчатых колес аналитическим методом
n1= nдв=1500 мин-1;
n6= nкр=150 мин-1;
;
мин-1;
;
мин-1;
мин-1;
Значения частот вращения получим графическим методом:
мин-1;
мин-1;
мин-1;
мин-1;
4 Синтез и анализ кулачкового механизма
4.1 Диаграммы движения толкателя
Исходные данные:
Максимальный подъём толкателя h=29 мм;
Фазовый рабочий угол ?=290;
Дезаксиал е=0 мм;
nкр=150 об/мин;
Z5=11;
Z6=25
Угол давления ?=25;
По заданному графику V-t графическим диференцированием получим график а-t, графическим интегрированием - S-t. Базы Н1=20 мм, Н2=25 мм. Методом исключения общего параметра t получим график V-S, a-S, a-V. Масштабные коэффициенты графиков:
Ks= м/мм;
Kv= мс-1/мм
Kt= c/мм;
Ka= мс-2/мм
4.2 Определение минимального радиуса кулачка
Минимальный радиус кулачка выбирается из условия выполнения угла давления. Для этого строим совмещённый график S'-V, где S'- текущее перемещение в стандартном масштабе КS'=0,0005 м/мм, V- аналог скорости.
На совмещённом графике на горизонтальных линиях откладываем аналоги скорости в масштабе КS'
x1= мм
x2=
К совмещённому графику проводим две касательные под углом давления ?. Ниже точки пересечения касательных выбирается центр вращения кулачка и соединяется с началом совмещённого графика. Это и будет минимальный радиус кулачка.
R0'=R0'?KS'=40?0,0005=0,02 м;
4.3 Построение профиля кулачка
Профилирование кулачка выполняется методом обращённого движения. Для этого строим кулачок в масштабе Кl=0,00025 м/мм. Проводим окружность радиусом R0' и окружность радиуса е. Откладываем угол ?р=290. Делим его на 12 частей и через точки деления проводим оси толкателя в обращённом движении. Вдоль осей толкателя откладываем текущее перемещение толкателя от окружности R0'. Соединяя полученные точки получим центровой профиль кулачка. Радиус ролика выбираем из условия:
rp=(0,2…0,4)R0'=0,25•40=10 мм
Минимальный радиус действительного профиля:
R0=R0'-rp=40-10=30 мм
Обкатывая ролик по центровому профилю получаем действительный профиль.
Public Sub kul()
Dim I As Integer
Dim dis1, dis2, R, a1, a2, arksin1, arksin2, BETTA, BET As Single