1. Кратко опишите процесс получения титана из руды. Укажите свойства титана и область его применения
Титан получают магнийтермическим способом, сущность которого состоит в обогащении титановых руд, выплавке из них титанового шлака с последующим получением из него четыреххлористого титана и восстановлении из последнего металлического титана магнием.
Сырьем для титана из руды являются титаномагнетитовые титановые, из которых выделяют ильменитовый концентрат, содержащий 40--45% TiO2, ~30% FeO, 20% Fe2O3 и 5--7% пустой породы. Название этот концентрат получил по наличию в нем минерала ильменита Feo*TiO2.
Ильменитовый концентрат плавят в смеси с древесным углем, антрацитом в рудно-термических печах, где оксиды железа титана восстанавливаются. Образующееся железо науглероживается, и получается чугун, а низшие оксиды титана переходят в шлак. Чугун и шлак разливают отдельно в изложницы. Основной продукт этого процесса--титановый шлак содержит 80-- 90% TiO2, 2--5% FeO и примеси SiO2, Al2O3, CaO и др. Побочный продукт этого процесса чугун используют в металлургическом производстве.
Полученный титановый шлак подвергают хлорированию в специальных печах. В нижней части печи располагают угольную насадку, нагревающуюся при пропускании через нее электрического тока. В печь подают брикеты титанового шлака, а через фурмы внутрь печи--хлор. При температуре 800-- 1250° С в присутствии углерода образуется четыреххлористый титан, а также хлориды CaCI2, MgCl2 и др. Ti02+2C+2Cl2=TiCl4+2CO.
Четыреххлористый титан отделяется и очищается от остальных хлоридов благодаря различию температуры кипения этих хлоридов методом ректификации в специальных установках.
Титан из четыреххлористого титана восстанавливают в реакторах при температуре 950--1000° С. В реактор загружают чушковый магний; после откачки воздуха и заполнения полости реактора аргоном внутрь его подают парообразный четыреххлористый титан. Между жидким магнием и четыреххлористым титаном происходит реакция
2Mg+TiCl4=Ti+2MgCl2.
Твердые частицы титана спекаются в пористую массу--губку, а жидкий MgCl2 выпускают через летку реактора.
Титановая губка содержит 35--40% магния и хлористого магния.
Для удаления из титановой губки этих примесей ее нагревают до температуры 900--950° С в вакууме.
Титановую губку плавят методом вакуумно-дугового переплава.
Вакуум в печи предохраняет титан от окисления и способствует очистке его от примесей. Полученные слитки титана имеют дефекты, поэтому их вторично переплавляют, используя как расходуемые электроды. После этого чистота титана составляет 99,6-- 99,7%. После вторичного переплава слитки используют для обработки давлением.
Свойства титана
В периодической системе элементов Д. И. Менделеева титан расположен в IV группе 4-го периода под номером 22. В важнейших и наиболее устойчивых соединениях он четырехвалентен. По внешнему виду похож на сталь. Титан относится к переходным элементам. Данный металл плавится при довольно высокой температуре (1668±4°С) и кипит при 3300 °С, скрытая теплота плавления и испарения титана почти в два раза больше, чем у железа.
Известны две аллотропические модификации титана. Низкотемпературная альфа-модификация, существующая до 882,5 ° С и высокотемпературная бетта-модификация, устойчивая от 882,5 °С до температуры плавления.
По плотности и удельной теплоемкости титан занимает промежуточное место между двумя основными конструкционными металлами: алюминием и железом. Стоит также отметить, что его механическая прочность примерно вдвое больше, чем чистого железа, и почти в шесть раз выше, чем алюминия. Но титан может активно поглощать кислород, азот и водород, которые резко снижают пластические свойства металла. С углеродом титан образует тугоплавкие карбиды, обладающие высокой твердостью.
Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза - железа. Коэффициент термического расширения при комнатной температуре сравнительно мал, с повышением температуры он возрастает.
Модули упругости титана невелики и обнаруживают существенную анизотропию. С повышеиием температуры до 350°С модули упругости уменьшаются почти по линейному закону. Небольшое значение модулей упругости титана - существенный его недостаток, т.к. в некоторых случаях для получения достаточно жестких конструкций приходится применять большие сечення изделий по сравнению с теми, которые следуют из условий прочности.
Титан имеет довольно высокое удельное электросопротивлеиие, которое в зависимости от содержания примесей колеблется в пределах от 42·10-8 до 80·10-6 Ом·см. При температурах ниже 0,45 К он становится сверхпроводником.
Титан - парамагнитный металл. У парамагнитных веществ мапнитная восприимчивость при нагревании обычно уменьшается. Титан составляет исключение из этого правила - его восприимчивость существенно увеличивается с температурой.
Физические и механические свойства титана
Свойство
Титан
Атомный номер
22
Атомная масса
47,00
Плотность при 20°С, г/cм3
4,505
Температура плавления, °С
1668
Температура кипения, °С
3260
Скрытая теплота плавления, Дж/г
358
Скрытая теплота испарения, кДж/г
8,97
Теплота плавления, кДж/моль
18,8
Теплота испарения, кДж/моль
422,6
Молярный объем, смі/моль
10,6
Удельная теплоемкость при 20°С, кДж/(кг·°С)
0,54
Удельная теплопроводность при 20°С, Вт/(м·К)
18,85
Коэффициент линейного термического расширения при 25°С, 10-6 м/мК
8,15
Удельное электросопротивление при 20°С, Ом·см·10-6
45
Модуль нормальной упругости, гПа
112
Модуль сдвига, гПа
41
Коэффициент Пуассона
0,32
Твердость, НВ
130...150
Цвет искры
Ослепительно-белый длинный насыщенный пучок искр
Группа металлов
Тугоплавкий, легкий металл
Химические свойства титана
Свойство
Титан
Ковалентный радиус:
132 пм
Радиус иона:
(+4e) 68 (+2e) 94 пм
Электроотрицательность (по Полингу):
1,54
Электродный потенциал:
- 1,63
Степени окисления:
2, 3, 4
Применение титана
Основная часть титана расходуется на нужды авиационной и ракетной техникии и морского судостроения. Титан (ферротитан) используют в качестве лигирующей добавки к качественным сталям и как раскислитель. Технический титан идет на изготовление емкостей, химических реакторов, трубопроводов, арматуры, насосов, клапанов и других изделий, работающих в агрессивных средах. Из компактного титана изготавливают сетки и другие детали элетктровакуумных приборов, работающих при высоких температурах.
По использованию в качестве конструкционного материала титан находится на 4-ом месте, уступая лишь Al, Fe и Mg. Алюминиды титана являются очень стойкими к окислению и жаропрочными, что в свою очередь определило их использование в авиации и автомобилестроении в качестве конструкционных материалов. Биологическая безвредность титана делает его превосходным материалом для пищевой промышленности и восстановительной хирургии.
Титан и его сплавы нашли широкое применеие в технике ввиду своей высокой мехнической прочности, которая сохраняется при высоких температурах, коррозионной стойкости, жаропрочности, удельной прочности, малой плотности и прочих полезных свойств. Высокая стоимость титана и его сплавов во многих случаях компенсируется их большей работоспособностью, а в некоторых случаях они являются единственным материалом, из которого можно изготовить оборудование или конструкции, способные работать в данных конкретных условиях.
Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Титан легок по сравнению с другими металлами, но в то же время может работать при высоких температурах (см. рис.2). Из титановых сплавов изготовляют обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%. Из титановых сплавов производят диски и лопатки компрессора, детали воздухозаборника и направляющего аппарата, крепеж.
Также титан и его сплавы используют в ракетостроении. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести.
Технический титан из-за недостаточно высокой теплопрочности не пригоден для применення в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении. Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запорной арматуры, автоклав, различного рода емкостей, фильтров и т. п. Только титан обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Из титана делают теплообменникн, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей). В судостоении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На титан и его сплавы не налипают ракушки, которые резко повышают сопротивление судна при его движении.
Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и дефицитностью титана.
Соединения титана также получили широкое применение в различных отраслях промышленности. Карбид титана обладает высокой твердостью и применяется в производстве режущих инструментов и абразивных материалов. Белый диоксид титана (TiO2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Титанорганические соединения (напр. тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности. Неорганические соединения титана применяются в химической электронной, стекловолоконной промышленности в качестве добавки. Диборид титана -- важный компонент сверхтвердых материалов для обработки металлов. Нитрид титана применяется для покрытия инструментов.
2. Опишите несовершенства (дефекты) кристаллического строения реальных металлов и укажите, как это отражается на их свойствах
Дефекты строения кристаллических тел
Идеальная кристаллическая решетка представляет собой многократное повторение элементарных кристаллических ячеек. Для реального металла характерно наличие большого количества дефектов строения, нарушающих периодичность расположения атомов в кристаллической решетке. Эти дефекты оказывают существенное влияние на свойства материала.
Различают три типа дефектов кристаллического строения: точечные, линейные и поверхностные.
Точечные дефекты
Точечные дефекты (рис. 1.5) характеризуются малыми размерами во всех трех измерениях. Величина их не превышает нескольких атомных диаметров. К точечным дефектам относятся: а) свободные места в узлах кристаллической решетки -- вакансии (дефекты Шоттки); б) атомы, сместившиеся из узлов кристаллической решетки в межузельные промежутки -- дислоцированные атомы (дефекты Френкеля); в) атомы других элементов, находящиеся как в узлах, так и в междоузлиях кристаллической решетки -- примесные атомы.
Точечные дефекты образуются в процессе кристаллизации под воздействием тепловых, механических, электрических воздействий, а также при облучении нейтронами, электронами, рентгеновскими лучами.
Вакансии и дислоцированные атомы могут появляться вследствие тепловых движений атомов. В характерных для металлов решетках энергия образования дислоцированных атомов значительно больше энергии образования тепловых вакансий. Поэтому основными точечными дефектами в металлах являются тепловые вакансии. При комнатной температуре концентрация вакансий сравнительно невелика и составляет около 1 на 1018 атомов, но резко повышается при нагреве, особенно вблизи температуры плавления. Точечные дефекты не закреплены в определенных объемах металла, они непрерывно перемещаются в кристаллической решетке в результате диффузии.
Рис. 1.4. Ориентировка кристаллических решеток: а) в зернах литого металла; б) после обработки давлением
Рис.1.5. Точечные дефекты в кристаллической решетке: а) вакансия; б) дислоцированный атом
Присутствие вакансий объясняет возможность диффузии -- перемещения атомов на расстояния, превышающие средние межатомные расстояния для данного металла. Перемещение атомов осуществляется путем обмена местами с вакансиями. Различают самодиффузию и гетеродиффузию. В первом случае перемещения атомов не изменяют их концентрацию в отдельных объемах, во втором -- сопровождаются изменением концентрации. Гетеродиффузия характерна для сплавов с повышенным содержанием примесей.
Точечные дефекты приводят к локальным изменениям межатомных расстояний и, следовательно, к искажениям кристаллической решетки. При этом увеличивается сопротивление решетки дальнейшему смещению атомов, что способствует некоторому упрочнению кристаллов и повышает их электросопротивление.
Вакансии, дислоцированные атомы и другие точечные дефекты обнаружены при исследовании металлов с помощью автоионного микроскопа, дающего увеличение свыше 106 раз.
Линейные дефекты
Линейные дефекты характеризуются малыми размерами в двух измерениях, но имеют значительную протяженность в третьем измерении. Наиболее важный вид линейных дефектов -- дислокации (лат. dislocation -- смещение). Теория дислокаций была впервые применена в середине тридцатых годов ХХ века физиками Орованом, Поляни и Тейлором для описания процесса пластической деформации кристаллических тел. Ее использование позволило объяснить природу прочности и пластичности металлов. Теория дислокаций дала возможность объяснить огромную разницу между теоретической и практической прочностью металлов.
На рис. 1.6 приведена схема участка кристаллической решетки с одной «лишней» атомной полуплоскостью, т. е. краевой дислокацией. Линейная атомная полуплоскость PQQ'Р'называется экстраплоскостью, а нижний край экстраплоскости -- линией дислокации. Если экстраплоскость находится в верхней части кристалла, то дислокацию называют положительной и обозначают знаком «», если в нижней -- то отрицательной и обозначают знаком «-». Различие между дислокациями чисто условное. Перевернув кристалл, мы превращаем положительную дислокацию в отрицательную. Знак дислокации позволяет оценить результат их взаимодействия. Дислокации одного знака отталкиваются, а противоположного -- притягиваются.
Помимо краевых дислокаций в кристаллах могут образовываться и винтовые дислокации (рис. 1.7).
Винтовые дислокации могут быть получены путем частичного сдвига атомных слоев по плоскости Q, который нарушает параллельность атомных слоев. Кристалл как бы закручивается винтом вокруг линии EF. Линия EF является линией дислокации. Она отделяет ту часть плоскости скольжения, где сдвиг уже завершился, от той части, где сдвиг еще не происходил. Винтовая дислокация, образованная вращением по часовой стрелке, называется правой, а против часовой стрелки -- левой.
Вблизи линии дислокации атомы смещены со своих мест и кристаллическая решетка искажена, что вызывает образование поля напряжений: выше линии дислокации решетка сжата, а ниже растянута.
Рис. 1.6. Краевая дислокация
Рис. 1.7. Винтовая дислокация
Дислокации образуются уже при кристаллизации металлов, а также в ходе пластической деформации и фазовых превращений. Плотность дислокаций может достигать большой величины. Под плотностью дислокаций обычно понимают суммарную длину дислокаций l, приходящуюся на единицу объема V кристалла: = l/V. Таким образом, размерность плотности дислокаций : см/см3, или см-2. Для отожженных металлов плотность дислокаций составляет величину 106-103 см-2, после холодной деформации она увеличивается до 1011-1012 см-2, что соответствует примерно 1 млн километров дислокаций в 1 см3.
Использование теории дислокаций позволило объяснить большое расхождение между теоретической и фактической прочностью металлов. Теоретическая прочность должна быть пропорциональна произведению сил межатомной связи на число атомов в сечении кристалла.
Расчетное усилие для смещения одной части кристалла относительно другой оказалось на 2-3 порядка выше фактически затрачиваемого при пластической деформации металла. Так, теоретическая прочность железа составляет около 13 000 МПа, а фактическая -- всего 250 МПа.
Такое расхождение теоретической и фактической прочности объясняется тем, что деформация происходит не путем одновременного смещения целых атомных плоскостей, а путем постепенного перемещения дислокаций. Влияние дислокаций на процесс пластической деформации на примере краевых дислокаций показано на рис. 1.8. Пластический сдвиг является следствием постепенного перемещения дислокаций в плоскости сдвига. Распространение скольжения по плоскости скольжения происходит последовательно. Каждый элементарный акт перемещения дислокации из одного положения в другое совершается путем разрыва лишь одной вертикальной атомной плоскости. Для перемещения дислокаций требуется значительно меньшее усилие, чем для жесткого смещения одной части кристалла относительно другой в плоскости сдвига. При движении дислокации вдоль направления сдвига через весь кристалл происходит смещение верхней и нижней его частей лишь на одно межатомное расстояние. В результате перемещения дислокация выходит на поверхность кристалла и исчезает. На поверхности остается ступенька скольжения.
В лекции о роли дислокаций Орован в качестве аналогии движения дислокаций приводил примеры перемещения таких представителей животного мира, как дождевой червь или змея. Они скользят по поверхности земли, последовательно перемещая участки своего тела. При этом участки, через которые прошла волна возмущения, восстанавливают исходную форму. В случае пластического сдвига позади переместившейся дислокации атомная структура верхних и нижних слоев восстанавливает свою исходную конфигурацию.
Рис. 1.8. Схема пластической деформации путем последовательного перемещения дислокации в простой кубической решетке:
а) исходное состояние краевой дислокации (^);
б) контур Бюргерса вокруг дислокации;
в) контур Бюргерса для неискаженной решетки после скольжения
Другой аналогией движения дислокаций является перемещение складки на ковре. Последовательное перемещение складки потребует значительно меньше усилий, чем перемещение всего ковра по поверхности пола, хотя в обоих случаях будет достигнут один и тот же результат -- ковер переместится на одинаковое расстояние (рис. 1.9).
Дислокации легко перемещаются в направлении, перпендикулярном экстраплоскости. Чем легче перемешаются дислокации, тем ниже прочность металла, тем легче идет пластическая деформация.
Пластическая деформация кристаллических тел связана с количеством дислокаций, их шириной, подвижностью, степенью взаимодействия с дефектами решетки и т. д. Характер связи между атомами влияет на пластичность кристаллов. Так, в неметаллах с их жесткими направленными связями дислокации очень узкие, они требуют больших напряжений для старта -- в 103 раз больших, чем для металлов. В результате хрупкое разрушение в неметаллах наступает раньше, чем сдвиг.
Таким образом, причиной низкой прочности реальных металлов является наличие в структуре материала дислокаций и других несовершенств кристаллического строения. Получение бездислокационных кристаллов приводит к резкому повышению прочности материалов (рис. 1.10).
Левая ветвь кривой соответствует созданию совершенных бездислокационных нитевидных кристаллов (так называемых «усов»), прочность которых близка к теоретической.
При ограниченной плотности дислокаций и других искажений кристаллической решетки процесс сдвига происходит тем легче, чем больше дислокаций находится в объеме металла.
С ростом напряжений возрастает число источников дислокаций в металле и их плотность увеличивается. Помимо параллельных дислокаций возникают дислокации в разных плоскостях и направлениях. Дислокации воздействуют друг на друга, мешают друг другу перемешаться, происходит их аннигиляция (взаимное уничтожение) и т. д., что позволило Дж. Гордону образно назвать их взаимодействие в процессе пластической деформации «интимной жизнью дислокаций». С повышением плотности дислокаций их движение становится все более затрудненным, что требует увеличения прилагаемой нагрузки для продолжения деформации. В результате металл упрочняется, что соответствует правой ветви кривой на рис. 1.11.
Упрочнению способствуют и другие несовершенства кристаллического строения, также тормозящие движение дислокаций. К ним относятся атомы растворенных в металле примесей и легирующих элементов, частицы выделений второй фазы, границы зерен или блоков и т. д. На практике препятствие движению дислокаций, т. е. упрочнение, создается введением других элементов (легирование), наклепом, термической или термомеханической обработкой. Снижение температуры также препятствует свободному перемещению дислокаций. При низких температурах прочность растет, а пластичность падает. Металл становится более прочным, но хрупким.
Таким образом, повышение прочности металлов и сплавов может быть достигнуто двумя путями: 1) получением металлов с близким к идеальному строением кристаллической решетки, т. е. металлов, в которых отсутствуют дефекты кристаллического строения или же их число крайне мало; 2) либо, наоборот, увеличением числа структурных несовершенств, препятствующих движению дислокаций.
Поверхностные дефекты
Поверхностные дефекты имеют малую толщину и значительные размеры в двух других измерениях. Обычно это места стыка двух ориентированных участков кристаллической решетки. Ими могут быть границы зерен, границы фрагментов внутри зерна, границы блоков внутри фрагментов. Соседние зерна по своему кристаллическому строению имеют неодинаковую пространственную ориентировку решеток. Блоки повернуты друг по отношению к другу на угол от нескольких секунд до нескольких минут, их размер 10-5 см. Фрагменты имеют угол разориентировки не более 5°. Если угловая разориентировка решеток соседних зерен меньше 5°, то такие границы называются малоугловыми границами. Такая граница показана на рис. 1.11. Все субзеренные границы (границы фрагментов и блоков) -- малоугловые. Строение границ зерен оказывает большое влияние на свойства металла.
Рис. 1.9. Схема движения дислокации по аналогии с перемещением складки на ковре
Рис. 1.10. Влияние искажений кристаллической решетки на прочность кристаллов
Рис. 1.11. Схема малоугловой границы между блоками
На рис. 1.12 показано, что границы зерен и фаз могут совпадать (когерентные), совпадать частично (полукогерентные) и не совпадать (некогерентные).
Граница между зернами представляет собой узкую переходную зону шириной 5-10 атомных расстояний с нарушенным порядком расположения атомов. В граничной зоне кристаллическая решетка одного зерна переходит в решетку другого (рис. 1.13). Неупорядоченное строение переходного слоя усугубляется скоплением в этой зоне дислокаций и повышенной концентрацией примесей.
Плоскости и направления скольжения в соседних зернах не совпадают. Скольжение первоначально развивается в наиболее благоприятно ориентированных зернах. Разная ориентировка систем скольжения не позволяет дислокациям переходить в соседние зерна, и, достигнув границы зерен, они останавливаются. Напряжения от скопления дислокаций у границ одних зерен упруго распространяются через границы в соседние зерна, что приводит в действие источники образования новых дислокаций (источники Франка--Рида). Происходит передача деформации от одних зерен к другим, подобно передаче эстафеты в легкоатлетических соревнованиях.
Рис. 1.13. Схема строения зерен и границ между ними
Вследствие того, что границы зерен препятствуют перемещению дислокаций и являются местом повышенной концентрации примесей, они оказывают существенное влияние на механические свойства металла.
Под размером зерна принято понимать величину его среднего диаметра, выявляемого в поперечном сечении. Это определение условно, так как действительная форма зерна в металлах меняется в широких пределах -- от нескольких микрометров до миллиметров. Размер зерна оценивается в баллах по специальной стандартизованной шкале и характеризуется числом зерен, приходящихся на 1 мм2 поверхности шлифа при увеличении в 100 раз (рис. 1.14).
Процесс пластического течения, а, следовательно, и предел текучести зависят от длины свободного пробега дислокаций до «непрозрачного» барьера, т. е. до границ зерен металла. Предел текучести ?Т связан с размером зерна d уравнением Холла--Петча: Т = о + kd-1/2, где о и k -- постоянные для данного металла. Чем мельче зерно, тем выше предел текучести и прочность металла. Одновременно при измельчении зерна увеличиваются пластичность и вязкость металла. Последнее особенно важно для металлических изделий, работающих при низких температурах. Повышенные пластичность и вязкость обусловлены более однородным составом и строением мелкозернистого металла, отсутствием в нем крупных скоплений, структурных несовершенств, способствующих образованию трещин.
Рис. 1.14. Шкалы для определения величины зерна (ГОСТ 5639-82)
Рост зерен аустенита эффективно затрудняет дисперсные частицы второй фазы -- карбидов, нитридов, неметаллических включений. Частицы нитрида AlN, содержащиеся в спокойных сталях, раскисленных алюминием, препятствуют росту аустенитных зерен.
В легированных сталях рост зерен аустенита тормозится карбидами и карбонитридами легирующих элементов V, Ti, Nb, микродобавки которых в количестве около 0,1 % специально вводят в стали с целью сохранения мелкого зерна аустенита вплоть до 1000 °С. Использование этих элементов одновременно обеспечивает мелкозернистую структуру и снижение критической температуры хрупкости.
Помимо перечисленных дефектов в металле имеются макродефекты объемного характера: поры, газовые пузыри, неметаллические включения, микротрещины и т. д. Эти дефекты снижают прочность металла.
3. Пользуясь диаграммой состав - свойства, укажите и объясните, с какой структурой можно получить сплавы с высоким удельным электросопротивлением и почему.
Сплавы с особенностями электросопротивления
Сплавы с особенностями электросопротивления делятся на три группы:
- проводниковые;
- с высоким электросопротивлением;
- диэлектрики.
К проводниковым сплавам предъявляются следующее эксплуатационные и технологические требования:
- малое электрическое сопротивление;
- высокая прочность (для предохранения от провисания);
- высокая пластичность и способность к холодному и горячему деформированию;
- хорошая коррозионная стойкость;
- легкость пайки и сварки (при монтаже).
Этим требованиям удовлетворяют (в различной степени) Ag, Си, А1, Fe.
Одним из важнейших проводниковых материалов является медь (Сu), которая по свойствам близка к серебру ( плотность с = 8,9 г/см2 при 20 оС, удельное электросопротивление - 0,017( Ом*мм)/м2. Кристаллическая решётка меди - ГЦК с параметром а = 0,36 Нм. Удельное электросопротивление меди принимается за эталон.
Марки меди: M1 (99,9 %), Тпл = 1083 оС; МО (99,95 %), Ткип = 2360 °С; МОО (99,99 %). В технической меди могут присутствовать вредные примеси: висмут (? 0,002 %), свинец (? 0,005 %), сера, кислород, которые уменьшают пластичность меди.
Чистая медь имеет малую прочность, поэтому её легируют кадмием (Cd), что приводит к незначительной потере электропроводности при сохранении достаточно высокой прочности. Проводимость таких сплавов составляет 80-90 % от проводимости чистой меди. Сплав, упрочненный наклепом, имеет проводимость 98 % от проводимости меди.
Алюминий (А1) имеет электросопротивление больше, чем у меди в 1,7 раза, но он легче. Для линий передач применяют сплав альдрей (0,4 % Mg, 0,6 % Si, 0,25 % Fe). К таким сплавам относятся АД000, АД0.
Большую прочность имеют биметаллы системы Fe - A1. Биметаллический провод (стальной провод, покрытый медью) используют при передаче переменных токов повышенной частоты.
Железо (Fe) имеет электросопротивление в 6-7 раз ниже электросопротивления меди. Сплавы железа (сталь с 0,1 - 0,15 % С) применяются для шин, рельсов электрических железных дорог и метро.
Сплавы с высоким электросопротивлением
Сплавы с высоким электросопротивлением применяют для изготовления элементов сопротивления реостатов и нагревательных элементов. Структура таких сплавов формируется на базе твердых растворов и к ним предъявляются следующие требования:
- они должны обладать высоким удельным электросопротивлением;
- должны иметь малый температурный коэффициент электросопротивления;
- должны обладать высокой окалиностойкостью (жаропрочностью);
- в них должны отсутствовать структурные превращения при нагревах и охлаждениях.
Для элементов сопротивления реостатов применяются сплавы:
Эти сплавы имеют малый коэффициент электросопротивления: манганин в интервале температур от - 60 до +80 °С и константан в интервале температур от - 60 до + 350 °С.
- никелевые: ферронихром - X15H60 (25 % Fe), нихром -Х20Н80. Сплав для деталей нагревательных приборов выпускается в виде проволоки или ленты.
4. Начертите диаграмму железо-цементит, укажите структуру во всех областях. Опишите превращения, протекающие в стали, содержащей 1,8% углерода, при медленном охлаждении от 1400° до 20°С.
Диаграмма желез-цементит
Затвердевание стали происходит в интервале температур ограниченных линией ликвидуса АС и линией солидуса АЕ; при этом из жидкости кристаллизуется аустенит, т. е. твердый раствор углерода в г-модификации железа.
При температурах, соответствующих линии ВС, из жидкого раствора кристаллизуется аустенит.
При охлаждении заэвтектоидной стали по линии ES из твердого раствора (аустенита) выделяется цементит вследствие уменьшения растворимости углерода в г-Fe с понижением температуры. Вследствие выделения вторичного цементита уменьшается содержание углерода в оставшемся аустените. На линии перлитовых превращений аустенит содержит 0,8% углерода и при дальнейшем охлаждении распадается с образованием перлита. Следовательно, ниже линии РК в условиях медленного охлаждения (в равновесном состоянии) сталь с содержанием углерода 1,8 % состоит из следующих структурных составляющих:
перлит + цементит вторичный.
Такой сплав называется - заэвтектоидная сталь.
Кривая охлаждения сплава,
5. Объясните, почему применение термической обработки разрешаетуменьшить металлоемкость машин, механизмов, оборудования
Термическая обработка металлов и сплавов является одной из важнейших составляющих любого технологического процесса изготовления металлических изделий, цель, которой заключается в создании требуемого комплекса механических либо иных физико-химических свойств материала изделия, в увеличении эксплуатационных характеристик работы изделий в конструкциях, машинах и агрегатах, а также в улучшении технологичности материала при получении изделий. Роль термической обработки металлов и сплавов трудно переоценить. Она, как основной упрочняющий вид обработки, обеспечивает надежность и достаточную долговечность работы машин и механизмов, уменьшает их металлоемкость, массу, снижает энергетические эксплуатационные затраты. Многие специальные металлические материалы, например, коррозионностойкие, инструментальные быстрорежущие стали приобретают эти свойства только в результате специальной термической обработки. Практически во всех случаях применение термической обработки по оптимальным режимам увеличивает эффекты повышения свойств сплавов, достигаемых при легировании. Наконец, предварительная термическая обработка слитков, заготовок и промежуточных полуфабрикатов обеспечивает принципиальную возможность проведения холодной или горячей обработки давлением, делает их более технологичными, улучшает обрабатываемость резанием, позволяет улучшить свойства готового изделия за счет получения более рациональной исходной его микро- и макроструктуры.
Термическая обработка, как операция технологического процесса, заключается в нагреве металла или сплава до заданной температуры, в выдержке при этой температуре либо без выдержки с последующим охлаждением.
В зависимости от вида обработки, ее цели, от исходного и требуемого конечного структурного состояния материала, термическая обработка характеризуется своими технологическими параметрами, в качестве которых выступают чаще всего температура и условия нагрева, длительность выдержки, скорость охлаждения и среда и способ охлаждения. При использовании дополнительных воздействий, кроме теплового, в качестве параметров такой обработки будут выступать контролируемые количественные и качественные характеристики этих воздействий.
Теория термической обработки - это учение об изменениях структурного и фазового состояния металлов или сплавов и их свойств при тепловом воздействии либо в его комбинации с другими физико-химическими воздействиями и не исчезающих после их прекращения.
6. Выберите и обоснуйте выбор марок сплавов для следующих деталей:
а) шариковых подшипников;
б) сверла, работающего с большой скоростью резания;
в) проволоки для реостата электроизмерительных приборов
а) шариковых подшипников;
Детали шарикоподшипников (кольца, шарики, ролики) в процессе работы испытывают высокие удельные переменные нагрузки. Поэтому стали, используемые для их изготовления, должны иметь высокую прочность, износостойкость и высокий предел выносливости. Кроме того, к шарикоподшипниковым сталям предъявляют высокие требования по содержанию неметаллических включений (сульфидных, оксидных), макро- и микрополостей, ликвации, размеру и расположению карбидных включений. Это обусловлено характером работы шарикоподшипников. Указанные дефекты являются концентраторами напряжений, особенно если они находятся в поверхностных слоях деталей. Кроме того, при работе подшипников возможно выкрашивание неметаллических включений, что резко снижает долговечность подшипника. Для изготовления шариковых и роликовых подшипников применяют высокоуглеродистую сталь, легированную хромом.
Маркировку ШХ следует расшифровывать как шарикоподшипниковую хромистую. Цифра показывает среднее содержание хрома в десятых долях процента.
Шарики и ролики небольших диаметров изготавливают из стали ШХ9. Из стали ШХ15-шарики диаметром больше 22,5 мм, ролики диаметром 15-30 мм, а также кольца всех размеров; ролики диаметром более 30 мм и кольца с толщиной стенки: более 15 мм-из стали ШХ15СГ.
Для изготовления деталей крупногабаритных подшипников, работающих при больших ударных нагрузках (например, подшипников прокатных станов), применяют цементуемую сталь 20Х2Н4А. При этом проводят глубокую цементацию, получая цементованный слой глубиной 5-10 мм
б) сверла, работающего с большой скоростью резания;
История развития обработки металлов показывает, что одним из эффективных путей повышения производительности труда в машиностроении является применение новых инструментальных материалов. Например, применение быстрорежущей стали вместо углеродистой инструментальной, позволило увеличить скорость резания в 2...3 раза. Это потребовало существенно усовершенствовать конструкцию металлорежущих станков, прежде всего увеличить их быстроходность и мощность. Аналогичное явление наблюдалось также при использовании в качестве инструментального материала твердых сплавов.
Инструментальный материал должен иметь высокую твердость, чтобы в течение длительного времени срезать стружку. Значительное превышение твердости инструментального материала по сравнению с твердостью обрабатываемой заготовки должно сохраняться и при нагреве инструмента в процессе резания. Способность материала инструмента сохранять свою твердость при высокой температуре нагрева определяет его красностойкость (теплостойкость). Режущая часть инструмента должна обладать большой износостойкостью в условиях высоких давлений и температур.
Важным требованием является также достаточно высокая прочность инструментального материала, так как при недостаточной прочности происходит выкрашивание режущих кромок либо поломка инструмента, особенно при их небольших размерах.
Инструментальные материалы должны обладать хорошими технологическими свойствами, т.е. легко обрабатываться в процессе изготовления инструмента и его переточек, а также быть сравнительно дешевыми.
В настоящее время для изготовления режущих элементов инструментов применяются инструментальные стали (углеродистые, легированные и быстрорежущие), твердые сплавы, минералокерамические материалы, алмазы и другие сверхтвердые и абразивные материалы.
ИНСТРУМЕНТАЛЬНЫЕ СТАЛИ
Режущие инструменты, изготовленные из углеродистых инструментальных сталей У10А, У11А, У12А, У13А, обладают достаточной твердостью, прочностью и износостойкостью при комнатной температуре, однако теплостойкость их невелика. При температуре 200-250 "С их твердость резко уменьшается. Поэтому они применяются для изготовления ручных и машинных инструментов, предназначенных для обработки мягких металлов с низкими скоростями резания, таких, как напильники, мелкие сверла, развертки, метчики, плашки и др. Углеродистые инструментальные стали имеют низкую твердость в состоянии поставки, что обеспечивает их хорошую обрабатываемость резанием и давлением. Однако они требуют применения при закалке резких закалочных сред, что усиливает коробление инструментов и опасность образования трещин.
Инструменты из углеродистых инструментальных сталей плохо шлифуются из-за сильного нагревания, отпуска и потери твердости режущих кромок. Из-за больших деформаций при термической обработке и плохой шлифуемости углеродистые инструментальные стали не используются при изготовлении фасонных инструментов, подлежащих шлифованию по профилю.
С целью улучшения свойств углеродистых инструментальных сталей были разработаны низколегированные стали. Они обладают большей прокаливаемостью и закаливаемостью, меньшей чувствительностью к перегреву, чем углеродистые стали, и в то же время хорошо обрабатываются резанием и давлением. Применение низколегированных сталей уменьшает количество бракованных инструментов.
Область применения низколегированных сталей та же, что и для углеродистых сталей.
По теплостойкости легированные инструментальные стали незначительно превосходят углеродистые. Они сохраняют высокую твердость при нагреве до 200-260°С и поэтому непригодны для резания с повышенной скоростью, а также для обработки твердых материалов.
Низколегированные инструментальные стали подразделяются на стали неглубокой и глубокой прокаливаемости. Для изготовления режущих инструментов используются стали 11ХФ, 13Х, ХВ4, В2Ф неглубокой прокаливаемости и стали X, 9ХС, ХВГ, ХВСГ глубокой прокаливаемости.
Стали неглубокой прокаливаемости, легированные хромом (0,2-0,7%), ванадием (0,15-0,3%) и вольфрамом (0,5-0,8%) используются при изготовлении инструментов типа ленточных пил и ножовочных полотен. Некоторые из них имеют более специализированное применение. Например, сталь ХВ4 рекомендуется для изготовления инструментов, предназначенных для обработки материалов, имеющих высокую поверхностную твердость, при относительно небольших скоростях резания.
Характерной особенностью сталей глубокой прокаливаемости является более высокое содержание хрома (0,8-1,7 %), а также комплексное введение в относительно небольших количествах таких легирующих элементов, как хром, марганец, кремний, вольфрам, ванадий, что существенно повышает прокаливаемость. В производстве инструментов из рассматриваемой группы наибольшее применение находят стали 9ХС и ХВГ. У стали 9ХС наблюдается равномерное распределение карбидов по сечению. Это позволяет использовать ее для изготовления инструментов относительно больших размеров, а также для резьбонарезных инструментов, особенно круглых плашек с мелким шагом резьбы. Вместе с тем сталь 9ХС имеет повышенную твердость в отожженном состоянии, высокую чувствительность к обезуглероживанию при нагреве.
Содержащие марганец стали ХВГ, ХВСГ мало деформируются при термической обработке. Это позволяет рекомендовать сталь для изготовления инструмента типа протяжек, длинных метчиков, к которым предъявляются жесткие требования относительно стабильности размеров при термической обработке. Сталь ХВГ имеет повышенную карбидную неоднородность, особенно при сечениях, больших 30...40 мм, что усиливает выкрашивание режущих кромок и не позволяет рекомендовать ее для инструментов, работающих в тяжелых условиях. В настоящее время для изготовления металлорежущих инструментов применяются, быстрорежущие стали. В зависимости от назначения их можно разделить на две группы:
1) стали нормальной производительности;
2) стали повышенной производительности.
К сталям первой группы относятся Р18, Р12, Р9, Р6МЗ, Р6М5, к сталям второй группы - Р6М5ФЗ, Р12ФЗ, Р18Ф2К5, Р10Ф5К5, Р9К5, Р9К10, Р9МЧК8, Р6М5К5 и др.
В обозначении марок буква Р указывает, что сталь относится к группе быстрорежущих. Цифра, следующая за ней, показывает среднее содержание вольфрама в процентах. Среднее содержание ванадия в стали в процентах обозначается цифрой, проставляемой за буквой Ф, кобальта -цифрой, следующей за буквой К.
Высокие режущие свойства быстрорежущей стали обеспечиваются за счет легирования сильными карбидообразующими элементами: вольфрамом, молибденом, ванадием и некарбидообразующим кобальтом. Содержание хрома во всех быстрорежущих сталях составляет 3,0-4,5 % и в обозначении марок не указывается. Практически во всех марках быстрорежущих сталей допускается серы и фосфора не более 0,3% и никеля не более 0,4%. Существенным недостатком этих сталей является значительная карбидная неоднородность, особенно в прутках большого сечения.
С увеличением карбидной неоднородности прочность стали, снижается, при работе выкрашиваются режущие кромки инструмента, и снижается его стойкость.
Карбидная неоднородность выражена сильнее в сталях с повышенным содержанием вольфрама, ванадия, кобальта. В сталях с молибденом карбидная неоднородность проявляется в меньшей степени.
Быстрорежущая сталь Р18, содержащая 18% вольфрама, долгое время была наиболее распространенной. Инструменты, изготовленные из этой стали, после термической обработки имеют твердость 63-66 HRСЭ, красностойкость 600°С и достаточно высокую прочность. Сталь Р18 сравнительно хорошо шлифуется.
Большое количество избыточной карбидной фазы делает сталь Р18 более мелкозернистой, менее чувствительной к перегреву при закалке, более износостойкой.
Ввиду высокого содержания вольфрама сталь Р18 целесообразно использовать только для изготовления инструментов высокой точности, когда стали других марок нецелесообразно применять из-за прижогов режущей части при шлифовании и заточке.
Сталь Р9 по красностойкости и режущим свойствам почти не уступает стали Р18. Недостатком стали Р9 является пониженная шлифуемость, вызываемая сравнительно высоким содержанием ванадия и присутствием в структуре очень твердых карбидов. Вместе с тем сталь Р9, по сравнению со сталью Р18, имеет более равномерное распределение карбидов, несколько большую прочность и пластичность, что облегчает ее деформируемость в горячем состоянии. Она пригодна для инструментов, получаемых различными методами пластической деформации. Из-за пониженной шлифуемости сталь Р9 применяют в ограниченных пределах.
Сталь Р12 равноценна, по режущим свойствам стали Р18. По сравнению со сталью Р18 сталь Р12 имеет меньшую карбидную неоднородность, повышенную пластичность и пригодна для инструментов, изготовляемых методом пластической деформации. По сравнению со сталью Р9 сталь Р12 лучше шлифуется, что объясняется более удачным сочетанием легирующих элементов.
Стали марок Р18М, Р9М отличаются от сталей Р18 и Р9 тем, что они в своем составе вместо вольфрама содержат до 0,6-1,0 %'молибдена (из расчета, что 1 % молибдена заменяет 2 % вольфрама). Эти стали имеют равномерно распределенные карбиды, но более склонны к обезуглероживанию. Поэтому закалку инструментов из сталей необходимо проводить в защитной атмосфере. Однако по основным свойствам стали Р18М и Р9М. не отличаются от сталей Р18 и Р9 и имеют ту же область применения.
Вольфрамомолибденовые стали типа Р6МЗ, Р6М5 являются новыми сталями, значительно повышающими как прочность, так и стойкость инструмента. Молибден обусловливает меньшую карбидную неоднородность, чем вольфрам. Поэтому замена 6...10 % вольфрама соответствующим количеством молибдена снижает карбидную неоднородность быстрорежущих сталей примерно на 2 балла и соответственно повышает пластичность. Недостаток молибденовых сталей заключается в том, что они имеют повышенную чувствительность к обезуглероживанию.
Вольфрамомолибденовые стали рекомендуется применять в промышленности наряду с вольфрамовыми для изготовления инструмента, работающего в тяжелых условиях, когда необходима повышенная износостойкость, пониженная карбидная неоднородность и высокая прочность.
Сталь Р18, особенно в крупных сечениях (диаметром более 50 мм), с большой карбидной неоднородностью целесообразно заменить на стали Р6МЗ, Р12. Сталь Р12 пригодна для протяжек, сверл, особенно в сечениях диаметром менее 60 -70 мм. Сталь Р6МЗ целесообразно использовать для инструментов, изготовляемых способом пластической деформации, для инструментов, работающих с динамическими нагрузками, и для инструментов больших сечений с малыми углами заострения на режущей части.
Среди быстрорежущих сталей нормальной производительности доминирующее положение заняла сталь Р6М5. Ее применяют для изготовления всех видов режущих инструментов. Инструменты из стали Р6М5 имеют стойкость, равную или до 20 % более высокую, чем стойкость инструментов из стали Р18.
Быстрорежущие стали повышенной производительности используются в основном при обработке жаропрочных сплавов, высокопрочных и нержавеющих сталей, других труднообрабатываемых материалов и конструкционных сталей с повышенными режимами резания. В настоящее время применяются кобальтовые и ванадиевые быстрорежущие стали.
По сравнению со сталями нормальной производительности высокованадиевые стали повышенной производительности обладают в основном более высокой износостойкостью, а стали, содержащие кобальт, более высокой красностойкостью и теплопроводностью. Вместе с тем быстрорежущие стали повышенной производительности, содержащие кобальт, имеют повышенную чувствительность к обезуглероживанию. Быстрорежущие стали повышенной производительности шлифуются хуже стали Р18 и требуют более точного соблюдения температур нагрева при термической обработке. Ухудшение шлифуемости выражается в повышении износа абразивных кругов и увеличении толщины поверхностного слоя стали, повреждаемого при излишне жестком режиме шлифования.
Быстрорежущие стали повышенной производительности из-за технологичских, недостатков не являются сталями универсального назначения. Они имеют относительно узкие границы применения, более пригодны для инструментов, подвергаемых незначительному профильному шлифованию.
Основной маркой быстрорежущей стали повышенной производительности является сталь Р6М5К5. Она применяется для изготовления различных инструментов, предназначенных для обработки конструкционных сталей на повышенных режимах резания, а также нержавеющих сталей и жаропрочных сплавов.
Перспективным способом получения быстрорежущих сталей является метод порошковой металлургии. Главной отличительной особенностью порошковых сталей является равномерное распределение карбидов по сечению, которое не превышает первого балла шкалы карбидной неоднородности ГОСТ 19265-73. В определенных условиях, как показывают эксперименты, стон-кость режущих инструментов из порошковых сталей в 1,2...2,0 раза выше стойкости инструментов, изготовленных из сталей обычного производства. Наиболее рационально порошковые стали использовать при обработке труднообрабатываемых сложнолегированных материалов и материалов, имеющих повышенную твердость (НRСэ?32), а также для изготовления крупногабаритных инструментов диаметром более 80 мм.
Проводятся работы по созданию и уточнению области целесообразного применения быстрорежущих сплавов дисперсионного твердения типа Р18М7К25, Р18МЗК25, Р10М5К25, которые представляют собой железоко-бальтовые вольфрамовые сплавы. В зависимости от марки они содержат:W-10...19%, Со-20...26%, Мо-3...7%, V-0,45...0,55%, Тi-0,15...0,3%, С-до 0,06%, Мn-не более 0,23%, Si-не более 0,28%, остальное железо. В отличие от быстрорежущих сталей, рассматриваемые сплавы упрочняются вследствие выделения при отпуске интерметаллидов, имеют более высокую красностойкость (700-720 °С) и твердость (68-69 НRСЭ). Высокая теплостойкость у них сочетается с удовлетворительной прочностью, что обусловливает повышенные режущие свойства этих сплавов. Эти сплавы дорогостоящие, и применение их целесообразно лишь при резании труднообрабатываемых материалов.
ТВЕРДЫЕ СПЛАВЫ
В настоящее время для производства режущих инструментов широко используются твердые сплавы. Они состоят из карбидов вольфрама, титана, тантала, сцементированных небольшим количеством кобальта. Карбиды вольфрама, титана и тантала обладают высокой твердостью, износостойкостью. Инструменты, оснащенные твердым сплавом, хорошо сопротивляются истиранию сходящей стружкой и материалом заготовки и не теряют своих режущих свойств при температуре нагрева до 750-1100 °С.
Установлено что твердосплавным инструментом, имеющим в своем составе килограмм вольфрама, можно обработать в 5 раз больше материала, чем инструментом из быстрорежущей стали с тем же содержанием вольфрама.
Недостатком твердых сплавов, по сравнению с быстрорежущей сталью, является их повышенная хрупкость, которая возрастает с уменьшением содержания кобальта в сплаве. Скорости резания инструментами, оснащенными твердыми сплавами, в 3-4 раза превосходят скорости резания инструментами из быстрорежущей стали. Твердосплавные инструменты пригодны для обработки закаленных сталей и таких неметаллических материалов, как стекло, фарфор и т. п.
Производство металлокерамических твердых сплавов относится к области порошковой металлургии. Порошки карбидов смешивают с порошком кобальта. Из этой смеси прессуют изделия требуемой формы и затем подвергают спеканию при температуре, близкой к температуре плавления кобальта. Так изготовляют пластинки твердого сплава различных размеров и форм, которыми оснащаются резцы, фрезы, сверла, зенкеры, развертки и др.
Пластинки твердого сплава крепят к державке или корпусу напайкой или механически при помощи винтов и прижимов. Наряд с этим в машиностроительной промышленности применяют мелкоразмерные, монолитные твердосплавные инструменты, состоящие из твердых сплавов. Их изготовляют из пластифицированных заготовок. В качестве пластификатора в порошок твердого сплава вводят парафин до 7-9 %. Из пластифицированных сплавов прессуют простые по форме заготовки, которые легко обрабатываются обычным режущим инструментом. После механической обработки заготовки спекают, а затем шлифуют и затачивают.
Из пластифицированного сплава заготовки монолитных инструментов могут быть получены путем мундштучного прессования. В этом случае спрессованные твердосплавные брикеты помещают в специальный контейнер с твердосплавным профилированным мундштуком. При продавливании через отверстие мундштука изделие принимает требуемую форму и подвергается спеканию. По такой технологии изготовляют мелкие сверла, зенкеры, развертки и т. п.
Монолитный твердосплавный инструмент может также изготовляться из окончательно спеченных твердосплавных цилиндрических заготовок с последующим вышлифовыванием профиля алмазными кругами.
В зависимости от химического состава металлокерамические твердые сплавы, применяемые для производства режущего инструмента, разделяются на три основные группы.
Сплавы первой группы изготовляют на основе карбидов вольфрама и кобальта. Они носят название вольфрамокобальтовых. Это сплавы группы ВК.
Ко второй группе относятся сплавы, получаемые на основе карбидов вольфрама и титана и связующего металла кобальта. Это двухкарбидные титано-вольфрамокобальтовые сплавы группы ТК.
Третья группа сплавов состоит из карбидов вольфрама, титана, тантала и кобальта. Это трехкарбидные титано-танталовольфрамокобальтовые сплавы группы ТТК.
К однокарбидным сплавам группы ВК относятся сплавы: ВКЗ, ВК4, ВК6, ВК8, ВК10, ВК15. Эти сплавы состоят из зерен карбида вольфрама, сцементированных кобальтом. В марке сплавов цифра показывает процентное содержание кобальта. Например, сплав ВК8 содержит в своем составе 92 % карбида вольфрама и 8 % кобальта.
Рассматриваемые сплавы применяются для обработки чугуна, цветных металлов и неметаллических материалов. При выборе марки твердого сплава учитывают содержание кобальта, которое предопределяет его прочность. Из сплавов группы ВК сплавы ВК15, ВК10, ВК8 являются наиболее вязкими и прочными, хорошо противостоят ударам и вибрациям, а сплавы ВК2, ВКЗ обладают наиболее высокой износостойкостью и твердостью при малой вязкости, слабо сопротивляются ударам и вибрациям. Сплав ВК8 применяется для черновой обработки при неравномерном сечении среза и прерывистом резании, а сплав ВК2 - для чистовой отделочной обработки при непрерывном, резании с равномерным сечением среза. Для получистовых работ и черновой обработки с относительно равномерным сечением срезаемого слоя применяются сплавы ВК4, ВК6. Сплавы ВК10 и ВК15 находят применение при обработке резанием специальных труднообрабатываемых сталей.
Режущие свойства и качество твердосплавного инструмента определяются не только химическим составом сплава, но и его структурой, т. е. величиной зерна. С увеличением размера зерен карбида вольфрама прочность сплава возрастает, а износостойкость уменьшается, и наоборот.
В зависимости от размеров зерен карбидной фазы сплавы могут быть мелкозернистые, у которых не менее 50 % зерен карбидных фаз имеют размер порядка 1 мкм,среднезернистые - с величиной зерна 1-2 мкм и крупнозернистые, у которых размер зерен колеблется от 2 до 5 мкм.
Для обозначения мелкозернистой структуры в конце марки сплава ставится буква М, а для крупнозернистой структуры - буква К. Буквы ОМ указывают на особо мелкозернистую структуру сплава. Буква В после цифры указывает на то, что изделия из твердого сплава спекаются в атмосфере водорода. Твердосплавные изделия одного и того же химического состава могут иметь различную структуру.
Получены особо мелкозернистые сплавы ВК6ОМ, В10ОМ, ВК150М. Сплав ВК6ОМ дает хорошие результаты при тонкой обработке жаропрочных и нержавеющих сталей, чугунов высокой твердости, алюминиевых сплавов. Сплав ВК10ОМ предназначен червовой и получерновой, а сплав ВК15ОМ - для особо тяжелых случаев обработки нержавеющих сталей, а также сплавов вольфрама, молибдена, титана и никеля.
Мелкозернистые сплавы, такие, как сплав ВК6М, используют для чистовой обработки при тонких сечениях среза стальных, чугунных, пластмассовых и других деталей. Из пластифицированных заготовок мелкозернистых сплавов ВК6М, ВК10М, ВК15М получают цельные инструменты. Крупнозернистые сплавы ВК4В, ВК8В, более прочные, чем обычные сплавы, применяют при резании с ударами для черновой обработки жаропрочных и нержавеющих сталей с большими сечениями среза.
При обработке сталей инструментами, оснащенными вольфрамокобальтовыми сплавами, в особенности при повышенных скоростях резания, происходит быстрое образование лунки на передней поверхности, приводящее к выкрашиванию режущей кромки сравнительно быстрому износу инструмента. Для обработки стальных заготовок применяют более износостойкие твердые сплавы группы ТК.
Сплавы группы ТК (ТЗОК4, Т15К6, Т14К8, Т5К10, Т5К12) состоят из зерен твердого раствора карбида вольфрама в карбиде титана и избыточных зерен карбида вольфрама, сцементированных кобальтом. В марке сплава цифра после буквы К показывает процентное содержание кобальта, а после буквы Т - процентное содержание карбидов титана. Буква В в конце марки обозначает, что сплав имеет крупнозернистую структуру.
Сплавы группы ТТК состоят из зерен твердого раствора карбида титана, карбида тантала, карбида вольфрама и избыточных зерен карбида вольфрама, сцементированных кобальтом. К сплавам группы ТТК относятся ТТ7К12, ТТ8К6, ТТ10К8Б, ТТ20К9. Сплав ТТ7К12 содержит 12% кобальта, 3% карбида тантала, 4% карбида титана и 81% карбида вольфрама. Введение в состав сплава карбидов тантала значительно повышает его прочность, но снижает красностойкость. Сплав ТТ7К12 рекомендуется для тяжелых условий при обточке по корке и работе с ударами, а также для обработки специальных легированных сталей.
Сплав ТТ8К6 применяют для чистовой и получистовой обработки чугуна, для непрерывной обработки с малыми сечениями среза стального литья, высокопрочных нержавеющих сталей, сплавов цветных металлов, некоторых марок титановых сплавов.
Все марки твердых сплавов разбиты по международной классификации (ИСО) на группы: К, М и Р. Сплавы группы К предназначены для обработки чугуна и цветных металлов, дающих стружку надлома. Сплавы группы М - для труднообрабатываемых материалов, сплавы группы Р - для обработки сталей.
С целью экономии дефицитного вольфрама разрабатываются безвольфрамовые металлокерамические твердые сплавы на основе карбидов, а также карбидонитридов переходных металлов, в первую очередь титана, ванадия, ниобия, тантала. Эти сплавы изготовляют на никелемолибденовой связке. Полученные твердые сплавы на основе карбидов по своим характеристикам примерно равноценны стандартным сплавам группы ТК. В настоящее время промышленностью освоены безвольфрамовые сплавы ТН-20, ТМ-3, КНТ-16 и др. Эти сплавы обладают высокой окалиностойкостью, низким коэффициентом трения, меньшим по сравнению с вольфрамсодержащими сплавами удельным весом, но имеют, как правило, более низкую прочность, склонность к разрушению при повышенных температурах. Изучение физико-механических и эксплуатационных свойств безвольфрамовых твердых сплавов показало, что они успешно могут быть использованы для чистовой и получистовой обработки конструкционных сталей и цветных сплавов, но значительно уступают сплавам группы ВК при обработке титановых и нержавеющих сталей.
Одним из путей повышения эксплуатационных характеристик твердых сплавов является нанесение на режущую часть инструмента тонких износостойких покрытий на основе нитрида титана, карбида титана, нитрида молибдена, окиси алюминия. Толщина наносимого слоя покрытия колеблется от 0,005 до 0,2 мм. Опыты показывают, что тонкие износостойкие покрытия приводят к значительному росту стойкости инструмента,
МИНЕРАЛОКЕРАМИЧЕСКИЕ МАТЕРИАЛЫ
Минералокерамические материалы для изготовления режущих инструментов стали применять с 50-х годов. В СССР был создан минералокерамический материал марки ЦМ-332, состоящий в основном из оксида алюминия А12О3 с небольшой добавкой (0,5-1,0%) оксида магния МgО. Оксид магния препятствует росту кристаллов во время спекания и является хорошим связующим средством.
Минералокерамические материалы изготовляются в форме пластинок и присоединяются к корпусам инструментов механическим путем, приклеиванием или припаиванием.
Минералокерамика ЦМ-332 обладает высокой твердостью, ее красностойкость достигает 1200°С. Однако она отличается низкой прочностью при изгибе (350-400 МН/м2) и большой хрупкостью, что приводит к частым выкрашиваниям и поломкам пластинок при работе.
Существенным недостатком минералокерамики является ее крайне низкое сопротивление циклическому изменению температуры. Вследствие этого даже при небольшом числе перерывов в работе на контактных поверхностях инструмента появляются микротрещины, которые приводят к его разрушению даже при небольших усилиях резания. Это обстоятельство ограничивает практическое применение минералокерамического инструмента.
Минералокерамика успешно может применяться для чистового обтачивания чугуна, сталей, неметаллических материалов и цветных металлов с большими скоростями и ограниченным числом перерывов в работе.
Минералокерамику марки ВШ наиболее эффективно применять для чистового точения углеродистых и малолегированных сталей, а также чугунов с твердостью НВ?260. При прерывистом точении керамика марки ВШ дает неудовлетворительные результаты. В этом случае целесообразно использовать керамику марки ВЗ.
Минералокерамику марок ВОК-60, ВОК-63 используются при фрезеровании закаленной стали и высокопрочных чугунов.
Новым инструментальным материалом, созданным на основе нитрида кремния, является силинит-Р. Он используется при чистовом точении сталей, чугуна, алюминиевых сплавов.
АБРАЗИВНЫЕ МАТЕРИАЛЫ
Большое место в современном производстве деталей машин занимают процессы шлифования, при которых используются различные абразивные инструменты. Режущими элементами этих инструментов служат твердые и теплоустойчивые зерна абразивного материала с острыми кромками.
Абразивные материалы подразделяются на естественные и искусственные. К естественным абразивным материалам относятся такие минералы, как кварц, наждак, корунд и др. Естественные абразивные материалы отличаются большой неоднородностью, наличием посторонних примесей. Поэтому по качеству абразивных свойств они не удовлетворяют растущим потребностям промышленности.
В настоящее время обработка искусственными абразивными материалами занимает ведущее место в машиностроении.
Наиболее распространенными искусственными абразивными материалами являются электрокорунды, карбиды кремния и бора.
К искусственным абразивным материалам относятся также полировально-доводочные порошки - оксиды хрома и железа.
Особую группу искусственных абразивных материалов составляют синтетические алмазы и кубический нитрид бора.
Электрокорунд получают электрической плавкой материалов, богатых оксидом алюминия, например, из боксита или глинозема в смеси с восстановителем (антрацитом или коксом).
Электрокорунд выпускается следующих разновидностей: нормальный, белый, хромистый, титанистый, циркониевый, монокорунд и сферокорунд. Электрокорунд нормальный содержит 92-95 % оксида алюминия и подразделяется на несколько марок: 12А, 13А, 14А, 15А, 16А. Зерна электрокорунда нормального наряду с высокой твердостью и .механической прочностью имеют значительную вязкость, необходимую при выполнении работ с переменными нагрузками при больших давлениях. Поэтому электрокорунд нормальный применяют для обработки различных материалов повышенной прочности: углеродистой и легированной сталей, ковкого и высокопрочного чугуна, никелевых и алюминиевых сплавов.
Электрокорунд белый марок 22А, 23А, 24А, 25А отличается высоким содержанием оксида алюминия (98-99%). По сравнению с электрокорундом нормальным он является более твердым, имеет повышенную абразивную способность и хрупкость. Электрокорунд белый может быть использован для обработки тех же материалов, что и электрокорунд нормальный. Однако из-за более высокой стоимости его применяют на более ответственных работах для операций окончательного и профильного шлифования, резьбошлифования, заточки режущего инструмента.
Электрокорунд хромистый марок 32А, ЗЗА, 34А наряду с оксидом алюминия А12О3 содержит до 2% оксида хрома Сr2О3. Добавка оксида хрома меняет его микроструктуру и строение. По прочности электрокорунд хромистый приближается к электрокорунду нормальному, а по режущим свойствам - к электрокорунду белому. Рекомендуется применять электрокорунд хромистый для круглого шлифования изделий из конструкционных и углеродистых сталей при интенсивных режимах, где он обеспечивает повышение производительности на 20-30 % по сравнению с электрокорундом белым.
Электрокорунд титанистый марки 37А наряду с оксидом алюминия содержит оксид титана ТiO2. Он отличается от электрокорунда нормального большим постоянством свойств и повышенной вязкостью. Это позволяет использовать его в условиях тяжелых и неравномерных нагрузок. Электрокорунд титанистый применяется на операциях предварительного шлифования с увеличенным съемом металла.
Электрокорунд циркониевый марки ЗЗА наряду с оксидом алюминия содержит оксид циркония. Он имеет высокую прочность и применяется в основном для обдирочных работ с большими удельными давлениями резания.
Монокорунд марок 43А, 44А, 45А получается в виде зерна, имеющего повышенную прочность, острые кромки и вершины с более выраженным свойством самозатачивания по сравнению с электрокорундом. Это обеспечивает ему повышенные режущие свойства. Монокорунд предпочтителен для шлифования труднообрабатываемых сталей и сплавов, для прецизионного шлифования сложных профилей и для сухого шлифования режущего инструмента,
Сферокорунд содержит более 99 % А1203 и получается в виде полых сфер. В процессе шлифования сферы разрушаются с образованием острых кромок. Сферокорунд целесообразно применять при обработке таких материалов, как резина, пластмассы, цветные металлы.
Карбид кремния получается в результате взаимодействия кремнезема и углерода в электрических печах, а затем дробления на зерна. Он состоит из карбида кремния и незначительного количества примесей. Карбид кремния, обладает большой твердостью, превосходящей твердость электрокорунда, высокой механической прочностью и режущей способностью.
Карбид кремния черный марок 53С, 54С, 55С применяют для обработки твердых, хрупких и очень вязких материалов; твердых сплавов, чугуна, стекла, цветных металлов, пластмасс. Карбид кремния зеленый марок 63С, 64С используют для заточки твердосплавного инструмента, шлифования керамики.
Карбид бора В4С обладает высокой твердостью, высокой износоустойчивостью и абразивной способностью. Вместе с тем карбид бора очень хрупок, что и определяет его применение в промышленности в виде порошков и паст для доводки твердосплавных режущих инструментов.
Абразивные материалы характеризуются такими основными свойствами, как форма абразивных зерен, зернистость, твердость, механическая прочность, абразивная способность зерен.
Твердость абразивных материалов характеризуется сопротивлением зерен поверхностному измельчению, местному воздействию приложенных сил. Она должна быть выше твердости обрабатываемого материала. Твердость абразивных материалов определяют методом царапания острия одного тела по поверхности другого или методом вдавливания алмазной пирамиды под малой нагрузкой в абразивное зерно.
Механическая прочность характеризуется дробимостью зерен под влиянием внешних усилий.
Оценку прочности производят раздавливанием навески абразивных зерен в стальной форме под прессом с помощью определенной статической нагрузки.
При обдирочных режимах с большим съемом металла требуются прочные абразивы, а при чистовом шлифовании и обработке труднообрабатываемых материалов предпочтительны абразивы с большей хрупкостью и способностью к самозатачиванию.
в) проволоки для реостата электроизмерительных приборов.
Проводниковые материалы с высоким сопротивлением бывают металлические, получившие наибольшее распространение, и неметаллические. Металлические проводниковые материалы можно разделить на три группы: 1 -- для точных электроизмерительных приборов и образцовых резисторов; 2 -- для резисторов и реостатов; 3 -- имеющие высокую рабочую температуру и предназначенные для нагревательных приборов и нагрузочных реостатов.
Основным материалом 1-й группы является медно-марганцевый сплав -- манганин. Манганин изготовляется двух марок: МНМцЗ-12 (3% Ni, 12% Mn, 85 % Си) и МНМцАЖЗ-12-0,3-0,3 (3 % Ni, 12 % Mn, 0,3 % А1, 0,3 % Fe, 84,4 % Си). Из первого сплава изготовляют твердую и мягкую (отожженную) проволоку, из второго -- только мягкую.
К материалам 2-й группы относится константан (40 % Ni, 60 % Си). Удельное сопротивление мягкой константановой проволоки 0,465*10-6, а твердой 0,49*10-6 См*м. Его температурный коэффициент сопротивления близок к нулю.
К материалам 3-й группы относятся сплавы никеля, хрома и железа (нихром); хрома, алюминия и железа (фехраль). Проволока из этих сплавов делится по применению на марки Н (для нагревательных приборов) и С (для реостатов).
В электронной аппаратуре широко применяют металлопленочные резисторы МЛТ, С2-22 и др. Токопроводящим элементом этих резисторов является тонкий слой сплава с высоким удельным сопротивлением, нанесенный на поверхность керамического стержня и покрытый защитным слоем эмали.
Литература
1 Никифоров В.М. Технология металлов и конструкционных материалов.-- Л: Машиностроение,-- 1987. -- 363 с.
2 Методичка Материаловедение_(Руденко_Н.Н.2005). ХТК для заочной формы обучения