1.3 Общее передаточное число и разбиение его по степеням
1.4 Силовые и кинематические параметры привода
2. Расчет клиноременной передачи
2.1 Исходные данные для расчёта передачи
2.2 Механический расчет
3. Расчет цилиндрической 3.1. Кинематическая схема передачи и исходные данные для расчета
3.2 Выбор материала и определение допустимых напряжений
3.3 Определение геометрических параметров
3.4 Проверочный расчет передачи
3.5 Определение сил в зацеплении (см. рис. 3.3)
4. Расчёт цилиндрической косозубой передачи || ступени
4.1 Кинематическая схема передачи и исходные данные для расчета
4.2 Выбор материала и определение допустимых напряжений
4.3 Определение геометрических параметров
4.4 Проверочный расчет передачи
4.5 Определение сил в зацеплении (см. рис. 3.3)
5. Условный расчет валов
5.1 Определение диаметров входного валаредуктора
6. Определение конструктивных размеров зубчатых колес
6.1 Размеры зубчатых колес цилиндрической передачи I ступени
6.2 Размеры зубчатых колес цилиндрической передачи II ступени
6.3 Определяем размеры цилиндрического колеса (рис.6.1.)
6.4 Определение диаметров выходного вала
7. Конструктивные размеры корпуса и крышки редуктора
7.1 Определение конструктивных размеров корпуса и крышки редуктора, согласно табл. 4.2, 4.3, [1]
7.2 Размеры необходимые для черчения
8. Выбор шпонок и их проверочный расчет
9. Расчёт промежуточного вала редуктора на статическую способность и долговечность
9.1 Расчет вала на несущую способность
9.2 Расчет вала на прочность
10. Расчет подшипников качения
10.1 Определение реакции в опорах
10.2 Определение коэффициентов
10.3 Определение эквивалентной нагрузки
10.4 Определяем долговечность подшипников
10.5 Выбор муфты
10.6 Проверочный расчёт зубчатой муфты
11. Выбор и проверочный расчёт опор скольжения
Литература
Вступление
Развитие народного хозяйства Украины тесно связано с развитием машиностроения, так как материальная мощность современной страны базируется на технике - машинах, механизмах, аппаратах, приводах, которые выполняют разную полезную работу. В наше время нет ни одной области народного хозяйства, где бы не применялись машины и механизмы в широких масштабах. Благодаря этому осуществляется комплексная механизация в промышленности, в сельском хозяйстве, в строительстве, на транспорте. Это заставляет уделять большое внимание при проектировании и усовершенствования конструкций современных машин и механизмов. Машины и механизмы, которые проектируются, должны иметь высокие эксплуатационные показатели, не большое количество энергии и эксплуатационных материалов, должны быть экономичными, как в процессе производства, так и в процессе эксплуатации, удобными и безопасными в обслуживании.
1. Кинетический и силовой расчёт привода
Согласно техническому заданию на курсовой проект по дисциплине «Детали машин» необходимо спроектировать привод цепного конвейера, который состоит из двигателя, клиноременной передачи, двухступенчатого цилиндрического ора и муфты. При проектировании деталей привода использованы современные критерии оценки их работоспособности - прочность, жесткость и износостойкость. Кинематический и силовой расчеты привода
1.1 Кинематическая схема привода
Рис 1.1
Таблица 1.1
Исходные данные для кинематического и силового расчета привода
Название параметров
Обозначения в формулах
Единица измерения
Величина параметра
Окружная сила
F1
Н
28000
Скорость
м/с
0,5
Число зубьев
z
-
9
Шаг цепи
р
мм
160
Режим работы
P
-
С
Число смен
T
-
1
1.2 Выбор двигателя
Работа над курсовым проектом по дисциплине «Детали машин» подготавливает студентов к решению более сложных задач общетехнического характера в своей дальнейшей практической деятельности.
Определяем необходимое усилие на валу 1 двигателя, кВт,
кВт
где N5- усилие на приводном валу 5, кВт, зобщ - общий кпд.
гдез12= зкр=0,95 - кпд между 1 и 2 валами; з23= зцп? з кр =0,96?0,99=0,95 - кпд между 2 и 3 валами; з34=зцп? зоп =0,97?0,99=0,96 - кпд между 3 и 4 валами; з45= зм? зоп зоп=1?0,99?0,99=0,98 - кпд между 4 и 5 валами.
Средние значения кпд принимаем из [1], табл. 1.1
зкр =0,95-кпд клиноременной передачи;
зцп =0,97-кпд цилиндрической передачи;
зоп=0,99-кпд в опорах;
зм=1,0-кпд муфты.
Принято, что валы привода установлены на подшипниках качения.
Определяем угловую скорость и частоту вращения вала электродвигателя.
рад/с
где рад/с - угловая скорость на 5 валу
где
- общее передаточное отношение привода.
,
Средние значения ориентировочных передаточных чисел принимаем из [2], табл. 5.5, с 74.
- ориентировочное передаточное число клиноременной передачи; - ориентировочное передаточное число цилиндрической передачи I ступени; - ориентировочное передаточное число цилиндрической передачи II ступени; - ориентировочное передаточное число муфты.
Определяем частоту вращения вала 1
об/мин.
Выбираем электродвигатель исходя из условий .
Из [3], табл.2.4, с.23, выбираем электродвигатель 4АН180М6, кВт об/мин и для дальнейших расчётов выполняем переход от к
рад/с
1.3 Общее передаточное число и разбиение его по степеням
Определяем действительное общее передаточное число привода при выбранном двигателе.
Проводим разбиение по степеням.
Принимаем ; ; .
Тогда
1.4 Силовые и кинематические параметры привода
Определяем мощности на валах:
кВт ; кВт ;
кВт ; кВт;
кВт (див.розд.1.2.1.)
Определяем угловые скорости валов:
рад/с;
рад/с;
рад/с;
рад/с;
рад/с.
Определяем крутящие моменты на валах:
Нм; Нм;
Нм;Нм;
Нм.
Результаты расчётов сводятся в табл.1.2 и являются исходными данными для всех следующих расчётов.
Таблица 1.2
Результаты кинетического и силового расчётов привода
Параметры
№ вала
N, кВт
щ рад/с
М,Нм
1
16,5
102,05
161,7
2,98
47,68
2
15,7
34,24
458,5
4
3
14,9
8,56
1740
4
4
14,3
2,14
6682
1
5
13
2,4
6542
2. Расчет клиноременной передачи
Схема клиноременной передачи
Рис 2.1
2.1 Исходные данные длярасчёта передачи
Таблица 2.1
Исходные данные для расчета передачи
Параметры
№шва
N, кВт
w, рад/с
М, Нм
ид12
и добщ
1
16,5
102,05
161,7
2,98
47,68
2
15,7
34,24
458,5
2.2 Механический расчет
Сечение ремня по табл. 5.6 ([8], с. 69)
Рис 2.2
При заданном значении М принимаем сечение ремня (В).
Диаметр меньшего шкива
Минимально допустимый диаметр шкива dmin= 63 мм.
Для повышения коэффициента полезного действия передачи, увеличения долговечности и тяговой способности ремней, уменьшение числа ремней принимаем d1=100 мм.
В соответствии с ГОСТ 1284.1-80 принимаем L = 1600 мм.
Окончательное межосевое расстояние
;
мм.
Принимаем a = 500 мм.
Наименьшее расстояние, необходимое для надевания ремня
aнаим = a- 0,01L;
aнаим = 500-0,01·1600 = 484 мм.
Наибольшее расстояние, необходимое для компенсации вытяжки ремня
aнаиб = a- 0,025L;
aнаиб = 500-0,025·1600 = 460 мм.
Коэффициент динамичности и режима работы
ср = 1,1
Угол обхвата
;
где - угол обхвата, є;
По табл. 5.7 ( 5, с.71) величина окружного усилия р0 , передаваемого одним ремнем р0=124 Н (на один ремень)
Допускаемое окружное усилие на один ремень
[р]=р0ЧСбЧСLЧCР,
где Сб=1-0,003(180-б1)=1- 0,003(180-156,24)=0,93
Коэффициент, учитывающий длину ремня
, так как расчетная длина L=1600=L0
Коэффициент режима работы Ср=1, следовательно
[р]=824•0,93=757
где р0 =814 ( по табл. 5,7 [8], с. 71 )
Окружное усилие
Н
Расчетное число ремней ; .
Принимаем Z = 4
3. Расчет цилиндрической 3.1. Кинематическая схема передачи и исходные данные для расчета
Кинематическая схема передачи
Рис.3.1.
Исходные данные для расчета передачи Таблица 3.1.
параметры
№ вала
N, кВт
щ, рад/с
M,Нм
ид34
идобщ
2
15,7
34,24
458,5
4,0
47,68
3
14,9
8,56
1740
3.2 Выбор материала и определениедопустимых напряжений
Материалы зубчатых колес
Для уравновешивания долговечности шестерни и колеса, уменьшения вероятности заедания и лучшей приработки твердость зубьев шестерни необходимо выбирать большей, чем твердость колеса: НВш = НВк + (20…50).
Так как к габаритам передачи не накладываются жесткие условия, то для изготовления зубчатых колес, из [6], принимаем материалы для шестерни - сталь 50, для колеса - сталь 40. Параметры материалов зубчатых колес сводим в таблицу 3.2.
Таблица 3.2
Материалы зубчатых колес.
Материал
Термообработка
Предел теку-чести, ут, МПа
Твердость, НВ
Шестерня
Сталь 50
нормализация
380
180
Колесо
Сталь 40
нормализация
340
154
Допустимые контактные напряжения:
,
где уНlim- граница контактной долговечности поверхности зубцов, соответствует базовому числу циклов изменения напряжений NН0 = 30 НВ2,4, (при твердости поверхности зубьев ?350 НВ,уНlimb = 2 НВ +70):
SН - коэффициент безопасности (запас прочности), учитывается от термообработки и характера нагрузок, принимаем SН = 1,1, [6];
КНL- Коэффициент долговечности, который учитывает время службы и режим нагрузок передачи, определяется из соотношения NН0 и дополнения (NУ·КНЕ); КНЕ - коэффициент интенсивности режима нагрузки, из [6], табл. 1.1, для легкого режима принимаем КНЕ = 0,06.
NУ- суммарное число циклов нагрузки зубьев за все время службы передачи:
,
где Lh-время службы передачи, для односменной работы Lh=1·104 час.
Так как в обоих случаях NН0 >NУ · КНЕ , то коэффициент долговечности
,
.
Мпа; МПа
Допустимые напряжения на изгиб.
,
где уFlimb - граница выносливости поверхности зубцов при изгибе, соответствует базовому числу циклов смены напряжений NFо = 4 · 106, [6], (при твердости поверхности зубьев ?350 НВ, уFlimb= НВ + 260):
SF - коэффициент безопасности (запас прочности), из [2], принимаемSF= 1,8, KFL- коэффициент долговечности, который учитывает время службы и режим нагрузок передачи, определяется соотношением NF0и (NУKFЕ); KFЕ - коэффициент интенсивности режима нагрузки, из [6], табл. 1.1, для легкого режима принимаем KFЕ = 0,02.
NУm·KFЕ= 1,05·108·0,02 = 2,1·106 < NF0 = 4·106,
NУк ·KFЕ= 0,26·108·0,02 = 0,52·106 < NF0 = 4·106.
Так как в обоих случаях NF0 > NУKFЕ, то согласно [ ], коэффициент долговечности:
; .
KFC- коэффициент реверсивности нагрузки, для нереверсивной передачиКНL - 1,0, [6].
Из условий контактной усталости поверхности зубьев:
,
где Ка - коэффициент межосевого расстояния, из [6], для косозубых передач Ка = 4300 Па1/3; - коэффициент ширины зубчатого венца по межосевому расстоянию, из [6], для косозубой передачи принимаем
шba = 0,45; и = ид34= 4;
КНв - коэффициент распределения нагрузки по ширине венца зубчатого колеса, из [6], табл.1.2, в зависимости от шbd= 0,5 шba (и+1) = 0,5 · 0,45 · (4+1) = 1,13, для косозубой передачи КНв= 1,046;[уН] - наименьшее из двух значений (шестерни и колеса) допустимых контактных напряжений, МПа.
,
Определение модуля.
Первоначальное значение расчетного модуля зубьев определяется
где в - угол наклона зубьев, для косозубой передачи в = 20°;
Zш - число зубьев шестерни, согласно [6] принимаем Zш = 20;
Zш - число зубьев колеса, Zк = Zши = 20·4 = 80.
Согласно [6], табл.1.3, принимаем mп = 5 мм.
- ширина: bк= шdааw = 0,45 · 266 = 119,7 мм. Принимаем bк= 120 мм.
3.4 Проверочный расчет передачи
Расчет на контактную усталость.
где ZН- коэффициент, учитывающий форму спряженных поверхностей зубьев: для косозубых - ZН= 1,75, [6];
ZМ= 275 · 103 Па1/2- коэффициент учитывающий механические свойства материалов зубчатых колес, [6];
ZЕ- коэффициент суммарной длинны контактный линий спряженных зубьев: для косозубых - ZЕ = 0,8, [6];
КН = КНа КН в КНV- коэффициент нагрузки : КНа - коэффициент распределения нагрузки между зубьями из [6], табл. 1.4, КН а = 1,15; КН в= 1,046, см. разд.3.3.1, КНV- коэффициент динамической нагрузки, из [6], табл. 1.4, при
; КHV=1.02; КН=1,15•1,046•1,02=1,22.
Так как уН = 363 находится в пределах (0,9…1,0)[уН], то расчет можем считать завершенным: .
Расчет на контактную прочность.
,
где Кп=2,2, [уН]max - наименьшее из двух значений (шестерни и колеса) допустимых максимальных контактных напряжений, МПа
Условие выполняется.
расчет на усталость при изгибе.
Определяем отдельно для шестерни и колеса по формуле
,
где - YF- коэффициент формы зуба, из [6], табл. 1.7, по эквивалентному числу зубьев ZV, для косозубой передачи: , YFш=3,92; ,YFк= 3,6.
YE- коэффициент перекрытия зубьев, согласно [6] принимаем YE=1,0.
Yв- коэффициент наклона зубьев, согласно [6] для косозубых передач принимается:
КF = КFа К Fв КFV- коэффициент нагрузки: КFа - коэффициент распределения нагрузки между зубьями для косозубых - КFа =1,0, [6], табл. 1,8; К Fв -коэффициент
Геометрические размеры цилиндрической зубчатой передачи
распределения нагрузки по ширине венца зубчатого колеса, из [6], табл. 1.9, в зависимости от шba = 1, 13 (см. разд. 3.3.1.) для косозубой передачи К Fв = 1,09; КFV- коэффициент динамической нагрузки, выбирается из табл. 1.10, [6], при КFV= 1,05; КF= 1,00 · 1,09 · 1,05 = 1,14.
Условия выполняются.
Расчет на прочность при изгибе.
Выполняется отдельно для шестерни и колеса при действии кратковременных максимальных нагрузок (в период пуска двигателя).
уF maх = уF Кп ? [уF]maxґ
где Кп - коэффициент перегрузки, из [2], табл. 1, с. 249 - Кп =2,2.
уF maх к = 92 · 2,2 = 202,4 МПа ? [уF]max к = 272 МПа.
Условия выполняются.
3.5 Определение сил в зацеплении (см. рис. 3.3)
- окружная сила
- радиальная сила
- осевая сила Fаш = Fак = Ftк tgв= 8651· tg 19,95 0 = 3139 Н
Схема сил в зацеплении
Рис.3.3.
4. Расчёт цилиндрической косозубой передачи || ступени
4.1 Кинематическая схема передачи и исходные данные для расчета
Кинематическая схема передачи
Рис.4.1.
Исходные данные.
Таблица 4.1.
Исходные данные для расчета передачи
параметры
№ вала
N, кВт
щ, рад/с
M,Нм
ид34
идобщ
3
14,9
8,56
1740
4
47,68
4
14,3
2,14
6682
4.2 Выбор материала и определениедопустимых напряжений
Материалы зубчатых колес.
Для уравновешивания долговечности шестерни и колеса, уменьшения вероятности заедания и лучшей приработки твердость зубьев шестерни необходимо выбирать большей, чем твердость колеса: НВш = НВк + (20…50).
Так как к габаритам передачи не накладываются жесткие условия, то для изготовления зубчатых колес, из [6], принимаем материалы для шестерни - сталь 50, для колеса - сталь 40. Параметры материалов зубчатых колес сводим в таблицу 3.2.
Таблица 4.2.
Материалы зубчатых колес
Материал
Термообработка
Предел теку-чести, ут, МПа
Твердость, НВ
Шестерня
Сталь 50
нормализация
380
180
Колесо
Сталь 40
нормализация
340
154
Допустимые контактные напряжения:
,
где уНlim- граница контактной долговечности поверхности зубцов, соответствует базовому числу циклов изменения напряжений NН0 = 30 НВ2,4, (при твердости поверхности зубьев ?350 НВ,уНlimb = 2 НВ +70):
KFL- коэффициент долговечности, который учитывает время службы и режим нагрузок передачи, определяется соотношением NF0и (NУKFЕ); KFЕ - коэффициент интенсивности режима нагрузки, из [6], табл. 1.1, для легкого режима принимаем KFЕ = 0,02.
NУm·KFЕ= 1,05·108·0,02 = 2,1·106 < NF0 = 4·106,
NУк ·KFЕ= 0,26·108·0,02 = 0,52·106 < NF0 = 4·106.
Так как в обоих случаях NF0 > NУKFЕ, то согласно [ ], коэффициент долговечности:
;
.
KFC- коэффициент реверсивности нагрузки, для нереверсивной передачиКНL - 1,0, [6].
Из условий контактной усталости поверхности зубьев:
,
где Ка - коэффициент межосевого расстояния, из [6], для косозубых передач Ка = 4300 Па1/3; - коэффициент ширины зубчатого венца по межосевому расстоянию, из [6], для косозубой передачи принимаем
шba = 0,45; и = ид34= 4;
КНв - коэффициент распределения нагрузки по ширине венца зубчатого колеса, из [6], табл.1.2, в зависимости от шbd= 0,5 шba (и+1) = 0,5 · 0,45 · (4+1) = 1,13, для косозубой передачи КНв= 1,046;[уН] - наименьшее из двух значений (шестерни и колеса) допустимых контактных напряжений, МПа.
,
Определение модуля.
Первоначальное значение расчетного модуля зубьев определяется
SН - коэффициент безопасности (запас прочности ), зависит от термообработки и характера нагрузок, принимаем SН = 1,1, [6];
КНL- Коэффициент долговечности, который учитывает время службы и режим нагрузок передачи, определяется из соотношения NН0 и дополнения (NУ·КНЕ); КНЕ - коэффициент интенсивности режима нагрузки, из [6], табл. 1.1, для легкого режима принимаем КНЕ = 0,06.
NУ- суммарное число циклов нагрузки зубьев за все время службы передачи:
,
где Lh-время службы передачи, для односменной работы Lh=1·10 4 час.
Так как в обоих случаях NН0 >NУ · КНЕ , то коэффициент долговечности
,
.
Мпа; МПа
Допустимые напряжения на изгиб.
,
где уFlimb - граница выносливости поверхности зубцов при изгибе, соответствует базовому числу циклов смены напряжений NFо = 4 · 106, [6], (при твердости поверхности зубьев ?350 НВ, уFlimb= НВ + 260):
SF - коэффициент безопасности (запас прочности), из [2], принимаемSF= 1,8,
где в - угол наклона зубьев, для косозубой передачи в= 20°;
Zш - число зубьев шестерни, согласно [6] принимаем Zш = 20;
Zш - число зубьев колеса, Zк = Zши = 20·4 = 80.
Согласно [6], табл.1.3, принимаем mп = 8,0 мм.
- ширина: bк= шdааw = 0,45 · 425 = 191,25 мм. Принимаем bк= 220 мм.
4.4 Проверочный расчет передачи
Расчет на контактную усталость. распределения нагрузки по ширине венца зубчатого колеса, из [6], табл. 1.9, в зависимости от шba = 1, 13 (см. разд. 3.3.1.) для косозубой передачи К Fв = 1,09; КFV- коэффициент динамической нагрузки, выбирается из табл. 1.10, [6], при н = 1,77 м/с, КFV= 1,05; КF= 1,00 · 1,09 · 1,05 = 1,14.
Условия выполняются.
Расчет на прочность при изгибе.
Выполняется отдельно для шестерни и колеса при действии кратковременных максимальных нагрузок (в период пуска двигателя).
уF maх = уF Кп ? [уF]maxґ
где Кп - коэффициент перегрузки, из [2], табл. 1, с. 249 - Кп =2,0.
При отсутствии данных о моменте изгиба, диаметр вала определяют приблизительно по известному крутящему моменту из условий прочности на кручение по заниженным значениям допустимых напряжений:
где i- номер вала, j- номер участка ступенчатого вала, Мi - крутящий момент на i-тому валу, принимаем из табл. 1.2. Согласно рекомендаций [4], с.53, принимаем пониженные допускаемые напряжения кручения, для валов редукторов общего назначения, [фк] = 25 МПа.
5.1 Определение диаметров входного валаредуктора
Схема входного вала редуктора
Рис. 5.1.
Согласно [7], с. 6 полученный диаметр округляем до ближнего большего значения из стандартного ряда Ra40 ГОСТ6636-69.
Принимаем d21 = 50 мм.
Диаметры других участков вала выбираем из стандартного ряда Ra40 ГОСТ6636-69.
Принимаем d22 =60 ммd23 = 60 мм d24 = 65 мм. .2. Определение диаметров промежуточного вала редуктора
Схема промежуточного вала редуктора
Рис. 5.1.
6. Определение конструктивных размеров зубчатых колес
6.1 Размеры зубчатых колес цилиндрической передачи I ступени
Устанавливаем способ изготовления шестерни и вала - вместе или отдельно. Согласно рекомендаций [1], если - отдельно, - вместе, где dfш - диаметр впадин шестерни (dfш = 200,7 мм, см. разд.3.3.3.11),dвш- диаметр участка вала под шестерню (dвш = 60 мм, см. разд. 5.2)
-выполняем вместе.
6.2 Размеры зубчатых колес цилиндрической передачи II ступени
Устанавливаем способ изготовления шестерни и вала - вместе или отдельно. Согласно рекомендаций [1], если - отдельно, - вместе где dfш - диаметр впадин шестерни,,dfш =150 мм, dвш- диаметр участка вала под шестерню dвш =d24 =75 мм.
- выполняется отдельно.
6.3 Определяем размеры цилиндрического колеса (рис.6.1.)
Схема колеса зубчатого
Рис.6.1.
Согласно [7], с.6 полученный диаметр округляем до ближайшего большего значения из стандартного ряда Ra40 ГОСТ6636-69.
Принимаем d31 = 70 мм.
Диаметры других участков вала выбираем из стандартного ряда Ra40 ГОСТ6636-69.
Принимаем d32 = 75 мм; d33 = 80 мм.
6.4 Определение диаметров выходного вала
Схема выходного вала редуктора
Рис. 5.2.
Согласно [7], с.6 полученный диаметр округляем до ближайшего большего значения из стандартного ряда Ra40 ГОСТ6636-69.
Принимаем d41 = 110 мм.
Диаметры других участков вала выбираем из стандартного ряда Ra40 ГОСТ6636-69.
Принимаем d42 = 115 мм;d43 = 120 мм;d44 = 130 мм. d45 = 140 мм.
Общая ширина зубчатого венца в=220 мм.
Диаметр ступицы dс = 1,6dв = 1,6 · 130 = 208 мм
Длина ступицы lс = (1,2…1,5)dв = 1,5 · 130 = 195 мм. Принимаем 220 мм
Толщина обода д0 = (2,5…4)mn4 · 8 = 32 мм
Толщина диска с = (0,2…0,4)b = 0,4·220 = 88 мм Принимаем 90 мм.
Расстояние от окружности выступов наибольшего колеса до дна редуктора: b0= (0,5…10)m = (5…10) •8 = 50…80мм.
Размеры отверстий под подшипники редуктора принимаем в зависимости от размеров подшипника, согласно рекомендаций с. 141, [1].
Оставшиеся необходимые геометрические размеры корпуса и крышки принимаем конструктивно на основе рекомендаций с. 140-8. Эскизная компоновка редуктора
8. Выбор шпонок и их проверочный расчет
Выполняем проверочный расчет шпонки на смятие. Результаты расчетов сводим в таблицу 8.2.
Таблица 8.2.
Результаты проверочных расчетов шпонок на смятие
Номер вала и название шпонки
[усм]
2- шпонка под ведомый шкив клиноременной передачи
140
2- шпонка под шестерню цилиндрической передачи I ступени
3 - шпонка под колесо цилиндрической передачи I ступени
3 - шпонка под шестерню цилиндрической передачи II ступени
4 - шпонка под колесо цилиндрической передачи II ступени
4 - шпонка под зубчатую муфту
Схема шпоночного соединения
Рис. 8.1.
Для передачи крутящего момента зубчатые колеса, шкивы, муфты соединяются с валами при помощи призматических шпонок.
Геометрические размеры поперечных сечений (b, h) призматических шпонок выбираем в зависимости от диаметров валов. Длины шпонок принимаем на 5…10 мм меньше длин ступиц в ряду стандартных значений, приведенных в табл.5.19, [1].
В качестве материала шпонок используем - Сталь 45, нормализованную [узм] = 140 МПаи [фзр] = 100 МПа, с. 191, [1].
Размеры сечений шпонок и пазов по ГОСТ 10748-79 выбираем из табл. 5.19, [1] и сводим в таблицу 8.1
Таблица 81
Параметры и размеры шпоночных соединений
Номер вала и название шпонки
Диам. вала d1 мм
Мкр,
Нм
Размеры шпонки, мм
b
h
l
t1
t2
2- шпонка под ведомый шкив клиноременной передачи
50
458,5
18
11
80
7
4,4
2- шпонка под шестерню цилиндрической передачи I ступени
55
458,5
20
12
90
7,5
4,9
3 - шпонка под колесо цилиндрической передачи I ступени
75
1740
22
14
100
9
5,4
3 - шпонка под шестерню цилиндрической передачи II ступени
75
1740
22
14
100
9
5,4
4 - шпонка под колесо цилиндрической передачи II ступени
130
6542
36
20
180
12
8,4
4 - шпонка под зубчатую муфту
110
6542
32
18
150
11
7,4
При эскизном проектировании размещаем детали передач (шестерни и зубчатые колеса), валы, подшипники, складываем эскизную компоновку цилиндрического редуктора.
По определенном размерам зубчатых передач, валов, корпуса и крышки(см. разд. 3, 4, 5, 6,) строим на миллиметровой бумаге формата А1 эскиз коническо - цилиндрического редуктора, в масштабе 1:4. При оформлении эскиза редуктора вычерчиваем конструкцию колес и его корпуса. Подшипники и болтовые соединения вычерчиваем упрощенно.
Подшипники качения выбираются из [3], ориентируясь на диаметры валов и характер нагрузки в передачах. В нашем случае выбираем подшипники №7312, №7314, №7224. В зависимости от их номера, который вмещает сведения о типе и серии подшипника выписываем габаритные размеры, которые используем в эскизной компоновке.
Размеры крышек под подшипники редуктора принимаем в зависимости от размеров подшипников, согласно рекомендаций с. 14.1, [1].
Другие необходимые геометрические размеры принимаем конструктивно, на основе рекомендаций с. 140-143, [1].
Для расчетов промежуточного вала из компоновочного чертежа прямым измерением определяем расстояние между точками приложения сил: l1 = 108мм, l2= 184мм иl3= 156мм.
После согласования параметров редуктора, проверочных расчетов валов и подшипников качения, чертим общий вид 143, [1].проверочный расчет шпонок на срез. Результаты вносим в таблицу 8.3.
Таблица 8.3
Результаты проверочного расчета шпонок на срез
Номер вала и название шпонки
[усм]
2- шпонка под ведомый шкив клиноременной передачи
80
2- шпонка под шестерню цилиндрической передачи I ступени
3 - шпонка под колесо цилиндрической передачи I ступени
3 - шпонка под шестерню цилиндрической передачи II ступени
4 - шпонка под колесо цилиндрической передачи II ступени
4 - шпонка под зубчатую
муфту
Условия прочности на деформации смятия и срез выполняются.
Порядок построения сил выполняем в следующей последовательности:
- вычерчиваем кинематическую схему привода;
- обозначаем опоры валов латинскими буквами А, В, С, D, E, F, обозначаем точки приложения сил К1, К2, К3, К4, приводим пространственную систему координат X, Y, Z к которой осуществляется привязка действующих сил;
- выполняем построения схемы сил в точках их приложения, способность и долговечность
9. Расчёт промежуточного вала редуктора на статическую способность и долговечность
9.1 Расчет вала на несущую способность
Силы, действующие на вал во время работы редуктора:
- силы, действующие на цилиндрическую шестерню II ступени: окружная сила Ftш = 20470 Н, Радиальная сила Frш=7928 Н; Осевая сила Faш =7450 Н.
- силы, действующие на цилиндрическое колесо I ступени Ftk= 8651 Н; радиальная сила Frk= 3349 Н; осевая сила Fак = 3139 Н.
Вычерчиваем расчетную схему вала (рис.9.1) и определяем размеры между опорами и точками приложения сил (расстояние определяем по первой эскизной компоновке редуктора измерением, допустив, что силы приложенные по середине колеса и шестерни): l1 = 108 мм, l2 = 184 мм,l3 = 156 мм.
Находим реакции в опорах от сил в вертикальной и горизонтальной плоскости:
Выполняем построения эпюр моментов изгиба в вертикальной и горизонтальной плоскостях, суммарного крутящего момента и изгиба.
Момент изгиба в вертикальной плоскости:
в m.K3: МК3 = RDX· l1 =2683 · 0,108 = 290 Нм;
в m.K4: МК4 = RCX· l3 =7262 · 0,156 = 1132,8 Нм;
Момент изгиба в горизонтальной плоскости
в m.K4: МК4 = RDz· l1 = 562 · 0,108 = 61Нм;
Суммарный момент изгиба определяется по формуле:
в m.K3:
в m.K4:
Определяем приведенный (эквивалентный) момент в опасном сечении.
Исходя из анализа построенных эпюр моментов опасное сечение вала находится на шестерне цилиндрической передачи II ступени (точка К4).
Значение эквивалентного момента в m.K4:
.
- коэффициент, табл. 5.3., [1] для материала вала
- сталь 40. [у1], у0- допустимые напряжения для материала вала соответственно при симметричном и при пульсирующем циклах нагрузки, табл. 5.3., [1].
Определяем диаметр вала в опасном сечении:
Полученный диаметр округляем до ближайшего большего значения из стандартного ряда Rа 40 ГОСТ 6636-69. С учетом шпоночного паза принимаем d32 = 75мм.
Диаметр вала в этом сечении, принятый в условном расчете
d32 = 75,0мм, т.е. условие выполняется.
9.2 Расчет вала на прочность
Для опасного сечения быстроходного вала, который имеет конструктивный концентратор напряжений - переход от меньшего диаметра к большему (между участками под подшипник и шестерню), определяем характеристики напряжений, [1], с.173- 185.
Зj- осевой момент в сечении опор j - того участка вала. Для сечения в m. К4, м3.
где d - диаметр вала под подшипник,
при пульсирующем цикле:
где W кj- полярный момент сечения опор j - того участка вала. Для сечения под шпонку, м3.
Выбираем коэффициенты:
- эффективные коэффициенты конструкционных напряжений при изгибе - Ку = 1,75, при кручении - Кф =1,50, табл. 5.11, [1].
- масштабные коэффициенты, учитывающие снижения границы выносливости с увеличением размеров вала: при изгибе - Эу = 0,745; при кручении- Эr= 0,745, табл. 5.16, [1].
- коэффициенты учитывающие свойства материалов до асимметрии цикла напряжений:
Срок работы привода Lh=1•104ч подшипники (опора С и опора D) обеспечивают.
10.5 Выбор муфты
Расчётный крутящий момент, который передаёт муфта в данном приводе определяется по формуле:
Мmax=KPMн=1,5•6682=10023Нм,
где KP= 1,5 - коэффициент, который учитывает условия эксплуатации установки, принимаем по табл. 7.1. , [1].
Мн - номинальный крутящий момент на валу.
Выбираем зубчатую муфту МЗ 6, табл. 17.6.,[9] с такими параметрами:
М=11800 Нм, dв = 105 мм,nmax=2500 об/мин.
Геометрические размеры муфты, см. рис. 12.2.
B = 50 мм, D=320 мм, D1=230 мм, D2=140 мм, L=255 мм.
Размеры зацепления зубчатой муфты:
m =4,0 мм,z=48, b=30 мм.
Муфты зубчатые используют для соединения валов, которые передают большие крутящие моменты, где точное установление валов невозможно или возникают значительные осложнения. Зубчатые муфты отличаются компактностью и высокой выносливостью нагрузок.
Компенсирующая способность муфты достигается созданием зазоров между зубьями и приданием бочкообразной формы зубьям.
10.6Проверочный расчёт зубчатой муфты
Рис. 10.5.
11. Выбор и проверочный расчёт опор скольжения
В качестве опор конвейера принимаем подшипники скольжения, разъёмные с двумя болтами по ГОСТ 11607-65 с чугунными вкладышами с СЧ 18 для которого определяем допустимые значения параметров: , , табл. 9.1, [8].
Конструктивные размеры корпуса выбранного подшипника определяем согласно С.594, [8] в зависимости от диаметра вала:
dВ=110 мм, d1=32 мм, B=130 мм, b=110 мм, H=200 мм, h=110 мм, h1= 40 мм, L=370 мм, A=310 мм,
A1=190 мм, шпилька М24х100.
Схема подшипника скольжения
Рис. 11.1.
Проверяем выбранный подшипник по двум критериям:
- условие износа ( долговечность )
,
где F0=Ft=28000 H - окружная сила, см. раздел 1.1.
- условие теплоустойчивости
где - скорость скольжения.
Оба условия выполняются, значит опоры скольжения удовлетворяют
При проверочном расчёте у зубчатых муфт рассчитывают рабочие поверхности зубов на износ (определяется граничное значение удельного давления на зубцы муфты).
где d0 - диаметр делительного круга, м,d0 = mz=4,0•48=192 мм,b - длина зуба зубчатой втулки, м, [q] - допустимое значение удельного давления для материала зубов, МПа, табл. 17.6, [9].
Литература
1. Киркач Н.Ф., Баласанян Р.А.. Расчёт и проектирование деталей машин [Учеб. Пособие для техн. вузов]. - 3-е изд., перераб. и доп. - Х.: Основа,1991.- 276 с.: схем.
3. Курсовое проектирование деталей машин: Справ. Пособие. Часть 1 / А.В. Кузьмин, Н.Н. Макейчик, В.Ф. Калачев и др.-Мн.: Выс. школа ,1982-208 с.,ил.
4. Курсовое проектирование деталей машин: Справ. Пособие. Часть 2 / А.В. Кузьмин, Н.Н. Макейчик, В.Ф. Калачев и др.-Мн.: Выс. школа ,1982-334 с.,ил.
5. Методичні вказівки для виконання курсового проекту з курсу „Деталі машин” (Розділ „Пасові передачі ”) для студентів спец. 31.11 заочної форми навчання / Гончарук О.М., Стрілець В,М., Шинкаренко І.Т., - Рівне, У||ВГ, 1990.-24 с.
6. Методические указания по выполнению курсового проекта по курсу «Детали машин» (Раздел «Расчёт закрытых зубчатых и червячных передач») для студентов специальности 1514 заочной формы обучения / Стрелец В.Н,, Шинкаренко И,Т.- Ровно, УИИВГ, 1988 - 41 с.
7. Методичні вказівки для виконання курсового проекту з курсу „Деталі машин” (Розділ „Розрахунки валів і підшипників кочення”) для студентів спец. 31.11 заочної форми навчання / Стрілець В,М., Шинкаренко І.Т., - Рівне, У||ВГ, 1990.-16 с.
С.А. Чернавский, Г.М. Ицкович и др.. Курсовое проектирование деталей машин, М: Машиностроение, 1979-351