Отклонение передаточного числа от номинального незначительное.
Определяем делительные диаметры шестерни и колеса по формуле (3.17) [2,c.37]:
d1=mn?z1=1,5х26=39мм;
d2=mn?z2=1,5х68=102мм;
Определяем остальные геометрические параметры шестерни и колеса по формулам [2,c.37]:
; ;
; ; ;
мм;
; мм;
; мм;
; мм;
; мм;
; мм;
; мм
; мм;
; мм;
Определяем окружные скорости колес
; м/с.
Назначаем точность изготовления зубчатых колес - 7А [2,c.32].
Определяем силы в зацеплении (3.7, 3.8):
- окружная
; Н;
- радиальная
; Н.
Осевые силы в прямозубой передачи отсутствуют.
Все вычисленные параметры заносим в табл.4.
Таблица 4 Параметры зубчатой передачи быстроходной ступени
Параметр
Шестерня
Колесо
mn,мм
1,5
ha,мм
1,5
ht,мм
1,875
h,мм
3,375
с, мм
0,375
z
26
68
d,мм
39
102
dа,мм
42
105
df,мм
35,25
98,25
b, мм
22
25
аW,мм
70
v, м/с
1,4
Ft, Н
166,7
Fr, Н
60,7
Учитывая, что геометрические параметры быстроходной ступени незначительно отличаются от тихоходной, выполнение проверочных расчетов нецелесообразно.
5 Проектный расчет валов редуктора
По кинематической схеме привода составляем схему усилий, действующих на валы редуктора по закону равенства действия и противодействия. Для этого мысленно расцепим шестерни и колеса редуктора, при этом дублирующий вал не учитываем.
Схема усилий приведена на рис.1.
Рис.2 Схема усилий, действующих на валы редуктора.
Из табл.1,2,4 выбираем рассчитанные значения:
Т1=3,4 Нм; Т2=8,5 Нм; Т3=42,5 Нм;
Ft1=166,7 Н; Ft2=1012 Н; Fr1=60,7 Н; Fr2=368 Н;
d1=39мм; d2=102мм; d3=14мм; d4=84мм.
Fm1 и Fm1 - консольные силы от муфт, которые равны [4, табл.6.2]:
; ;
Н; Н.
Rx и Ry - реакции опор, которые необходимо рассчитать.
Так как размеры промежуточного вала определяются размерами остальных валов, расчет начнем с тихоходного вала.
5.1 Расчет тихоходного вала редуктора
Схема усилий действующих на валы редуктора представлена на рис.2.
Назначаем материал вала. Принимаем сталь 40Х, для которой [2, табл.8.4] ув=730Н/мм2; Н/мм2; Н/мм2; Н/мм2.
Определяем диаметр выходного конца вала под полумуфтой из расчёта на чистое кручение [2,c.161]:
где [фк]=(20…25)МПа
Принимаем [фк]=20МПа.
; мм.
Принимаем окончательно с учетом стандартного ряда размеров Rа20 (ГОСТ6636-69):
мм.
Намечаем приближенную конструкцию ведомого вала редуктора (рис.3), увеличивая диаметр ступеней вала на 5…6мм, под уплотнение допускается на 2…4мм и под буртик на 10мм.
Рис.3 Приближенная конструкция тихоходного вала
мм;
мм - диаметр под уплотнение;
мм - диаметр под подшипник;
мм - диаметр под колесо;
мм - диаметр буртика;
b4=25мм.
Учитывая, что осевых нагрузок на валу нет предварительно назначаем подшипники шариковые радиальные однорядные особо легкой серии по мм подшипник №106, у которого Dп=55мм; Вп=13мм [4,табл.К27].
Выбираем конструктивно остальные размеры:
W=20мм; lм=20мм; l1=35мм; l=60мм; с=5мм.
Определим размеры для расчетов:
l/2=30мм;
с=W/2+ l1+ lм/2=55мм - расстояние от оси полумуфты до оси подшипника.
Проводим расчет тихоходного вала на изгиб с кручением.
Заменяем вал балкой на опорах в местах подшипников (см. рис.4). Назначаем характерные точки 1,2, 3 и 4.
Определяем реакции в подшипниках в вертикальной плоскости.
УМ2y=0; RFy·0,06-Fr2·0,03=0
RFy= 368·0,06/ 0,03;
RЕy= RFy=736Н.
Рис.4 Эпюры изгибающих моментов тихоходного вала
Определяем изгибающие моменты в характерных точках:
М1у=0;
М2у=0;
М3у= RЕy·0,03;
М3у =22Нм2;
М3у=0;
Строим эпюру изгибающих моментов Му, Нм2 (рис.3)
Определяем реакции в подшипниках в горизонтальной плоскости.
УМ4x=0; Fm2·0,115- RЕx·0,06+ Ft2·0,03=0;
RЕx=( 814·0,115+ 1012·0,03)/ 0,06;
RЕx=2066Н;
УМ2x=0; Fm2·0,055- Ft2·0,03+ RFx·0,6=0;
RFx= (1012·0,03- 814·0,055)/ 0,06;
RFx=-240Н, результат получился отрицательным, следовательно нужно изменить направление реакции.
Определяем изгибающие моменты:
М1х=0;
М2= -Fr2·0,03
М2х=-368·0,03;
М2х=-11Нм;
М3хслева=-Fm2·0,085-RЕх ·0,055;
М3хслева==-814·0,085-240 ·0,03;
М3хслева=-76Нм;
М3х=- REх ·0,055;
М3х=- 2066 ·0,03;
М3х=- 62;
М4х=0;
Строим эпюру изгибающих моментов Мх.
Крутящий момент
Т1-1= Т2-2= Т3-3= T3=42,5Нм;
T4-4=0.
Определяем суммарные радиальные реакции [4,рис 8.2]:
; ;
; Н;
; Н.
Определяем результирующий изгибающий момент в наиболее опасном сечении (в точке 3) [4,рис 8.2]:
; ; Нм2.
Эквивалентный момент:
; ; Нм2.
5.2 Расчет быстроходного вала редуктора
Схема усилий, действующих на быстроходный вал представлена на рис.2.
Назначаем материал вала. Принимаем сталь 40Х, для которой [2, табл.8.4] ув=730Н/мм2; Н/мм2; Н/мм2; Н/мм2.
Определяем диаметр выходного конца вала под полумуфтой из расчёта на чистое кручение [2,c.161]:
где [фк]=(20…25)Мпа
Принимаем [фк]=20Мпа.
; мм.
Принимаем окончательно с учетом стандартного ряда размеров Rа5 (ГОСТ6636-69):
мм.
Намечаем приближенную конструкцию быстроходного вала вала редуктора (рис.5), увеличивая диаметр ступеней вала на 5…6мм, под уплотнение допускается на 2…4мм и под буртик на 10мм.
мм;
мм - диаметр под уплотнение;
мм - диаметр под подшипник;
мм - диаметр для заплечиков;
мм - диаметр вала-шестерни;
b1=22мм.
Учитывая, что осевых нагрузок на валу нет предварительно назначаем подшипники шариковые радиальные однорядные особо легкой серии по мм подшипник №101, у которого Dп=28мм; Вп=8мм [4,табл.К27].
Выбираем конструктивно остальные размеры:
W=14мм; lм=16мм; l1=25мм; l=60мм.
Определим размеры для расчетов:
l/2=30мм;
с=W/2+ l1+ lм/2=40мм - расстояние от оси полумуфты до оси подшипника.
Проводим расчет быстроходного вала на изгиб с кручением.
Рис.5 Приближенная конструкция быстроходного вала
Заменяем вал балкой на опорах в местах подшипников (см. рис.6). Назначаем характерные точки 1,2, 3 и 4.
Определяем реакции в подшипниках в вертикальной плоскости.
УМ2y=0; RАy·0,06-Fr1·0,03=0
RАy= 60,7·0,06/ 0,03;
RАy= RВy=121Н.
Определяем изгибающие моменты в характерных точках:
М1у=0;
М2у=0;
М3у= RАy·0,03;
М3у =3,6Нм2;
М3у=0;
Строим эпюру изгибающих моментов Му, Нм2 (рис.6).
Определяем реакции в подшипниках в горизонтальной плоскости.
Расстояние l определяем из суммарных расстояний тихоходного и быстроходного валов с зазором между ними 25…35мм.
l=60+30+30=120мм.
l1=30мм; l2=30мм.
Предварительно назначаем подшипники шариковые радиальные однорядные особо легкой серии по dп=25мм подшипник №105, у которого Dп=47мм; Вп=12мм [4, табл.К27].
Заменяем вал балкой на опорах в местах подшипников.
Рассматриваем вертикальную плоскость (ось у)
Определяем реакции в подшипниках ввертикальной плоскости.
МСу=0;
-RDу·0,09+Fr1·0,03+Fr2?0,12=0
RDy=(368·0,03+60,7?0,12)/ 0,09;
RDy==204Н.
МDу=0;
RCy·0,09- Fr1?0,06+ Fr2·0,03=0;
RCy=(368·0,06-60,7?0,03)/ 0,09;
RCy=225Н.
Назначаем характерные точки 1, 2,3, и 4 и определяем в них изгибающие моменты:
М1у=0;
М2у=-RCy·0,03;
М2у=-6Нм;
М3услева=-RCy·0,09+Fr1·0,06;
М3услева=-16,6Нм
М3усправа=Fr2·0,03;
М3усправа= 11
М4у=0;
Строим эпюру изгибающих моментов Му, Нм (рис.8).
Определяем реакции в подшипниках в горизонтальной плоскости.
МСх=0;
RDx·0,09-Ft1·0,03-Ft2?0,12=0;
RDx=( 166,7·0,03+ 1012?0,12)/0,09;
RDx=1404Н;
МDх=0;
RCx·0,09+ Ft1?0,06-Ft2·0,03=0;
RCx=(1012·0,03+166,7?0,06)/ 0,09;
RCx=337Н.
Назначаем характерные точки 1, 2, 3 и 4 и определяем в них изгибающие моменты:
М1x=0;
М2x=-RCx·0,03;
М2x=-10Нм;
М3xслева= -RCx·0,09-Ft1·0,06;
М3xслева=-91Нм;
М3xсправа= Ft2·0,03;
М3xсправа=5Нм;
М4у=0.
Строим эпюру изгибающих моментов Му, Нм (рис.8)
Рис.8 Эпюры изгибающих и крутящих моментов промежуточного вала.
Крутящий момент
Т1-1=0;
Т2-2=-Т3-3=-T2/2=-4,3Нм;
Т4-4=0.
Определяем суммарные радиальные реакции [4,рис 8.2]:
; ;
; Н;
; Н.
Определяем результирующий изгибающий момент в наиболее опасном сечении (в точке 3) [4,рис 8.2]:
; ; Нм.
Эквивалентный момент:
; ; Нм.
Все рассчитанные значения сводим в табл.5.
Таблица 5 Параметры валов
R1, H
R2, H
MИ, Нм
MИэкв, Нм
Тихоходный вал
2118
774
79
89
Быстроходный вал
323
117
12
12,5
Промежуточный вал
405
1419
92,5
93
6 Подбор и проверочный расчет шпонок
Выбор и проверочный расчет шпоночных соединений проводим по [4]. Обозначения используемых размеров приведены на рис.11.
Рис.9 Сечение вала по шпонке
6.1 Шпонки быстроходного вала
Для выходного конца быстроходного вала при d=10 мм подбираем призматическую шпонку со скругленными торцами по ГОСТ23360-78 bxh=3x3 мм2при t=1,8мм (рис.9).
При длине ступицы полумуфты lм=16 мм выбираем длину шпонки l=14мм.
Материал шпонки - сталь 40Х нормализованная. Напряжения смятия и условия прочности определяем по формуле:
(6.1)
где Т - передаваемый момент, Нмм; Т1=3,4 Нм.
lр - рабочая длина шпонки, при скругленных концах lр=l-b,мм;
[]см - допускаемое напряжение смятия.
С учетом того, что на выходном конце быстроходного вала устанавливается полумуфта из ст.3 ([]см=110…190 Н/мм2) вычисляем:
Условие выполняется.
6.2 Шпонки промежуточного вала
Для зубчатого колеса вала при d=30 мм подбираем призматическую шпонку со скругленными торцами bxh=8x7 мм2 при t=4мм, t1=3,3мм. Т2=8,5Нм.
При длине ступицы шестерни lш=25 мм выбираем длину шпонки l=25мм.
Материал шпонки - сталь 45 нормализованная. Проверяем напряжение смятия, подставив значения в формулу (6.1):
Условие выполняется.
6.3 Шпонки тихоходного вала
Передаваемый момент Т3=42,5Нм.
Для выходного конца вала при d=22мм подбираем призматическую шпонку со скругленными торцами bxh=6x6 мм2при t=3,5мм.
При длине ступицы полумуфты lМ=20 мм выбираем длину шпонки l=16мм.
Для зубчатого колеса тихоходного вала при d=35 мм подбираем призматическую шпонку со скругленными торцами bxh=10x8мм2при t=5мм.
При длине ступицы шестерни lш=20 мм выбираем длину шпонки l=20мм.
С учетом того, что на ведомом валу устанавливаются шестерни из стали 45 ([]см=170…190 Н/мм2) вычисляем по формуле (6.1):
условие выполняется.
Таблица 6 Параметры шпонок и шпоночных соединений
Параметр
тих.вал- полум
тих.вал- колесо
промвал-шестерня
промвал-колесо
быстр
вал-шестер.
быстр.
вал-полум.
Ширина шпонки b,мм
6
10
-
8
-
3
Высота шпонки h,мм
6
8
-
7
-
3
Длина шпонки l,мм
16
20
-
25
-
14
Глубина паза на валу t,мм
3,5
5
-
4
-
1,8
Глубина паза во втулке t1,мм
2,8
3,3
-
3,3
-
1,4
7 Проверочный расчет валов на статическую прочность
В соответствии с табл.5 наиболее опасным является сечение 3-3 тихоходного вала, в котором имеются концентраторы напряжений от посадки зубчатого колеса с натягом, шпоночного паза и возникают наибольшие моменты.
Исходные данные для расчета:
МИэкв= 89Нм;
МИ=79Нм;
Т3-3=42,5Нм;
dв=35мм;
в=10мм - ширина шпонки,
t=5мм - глубина шпоночного паза,
l=22мм - длина шпонки.
При расчете принимаем, что напряжения изгиба изменяются по симметричному циклу, а напряжения кручения - по отнулевому циклу.
Определяем диаметр вала в рассчитываемом сечении при допускаемом напряжении при изгибе [у-1]и=60МПа:
мм; 35>20.
Условие соблюдается.
Определяем напряжения изгиба:
уи=Ми/W;
где W - момент сопротивлению изгибу. По [4,табл.11.1]:
;
мм3;
уи=79000/3566=22Н/мм2.
При симметричном цикле его амплитуда равна:
уа= уи =22Н/мм2.
Определяем напряжения кручения:
фк=Т3-3/Wк;
где Wк - момент сопротивлению кручению. По [4,табл.22.1]:
;
мм3;
фк=42500/7775=5,4Н/мм2.
При отнулевом цикле касательных напряжений амплитуда цикла равна:
где Ку и Кф - эффективные коэффициенты концентрации напряжений, по табл.11.2 [4] выбираем для шпоночных пазов, выполненных концевой фрезой Ку =1,6, Кф =1,4;
Кd - коэффициент влияния абсолютных размеров поперечного сечения, по табл.11.3 [4] выбираем Кd =0,75;
КF- коэффициент влияния шероховатости, по табл.11.4 [4] выбираем для шероховатости Rа=1,6 КF=1,05;
Кy - коэффициент влияния поверхностного упрочнения, по табл.11.4 [4] выбираем для закалки с нагревом ТВЧ Кy =1,5.
Подставив значения в формулы (7.1) получим:
(Ку)D=( 1,6/0,75+ 1,05-1)/ 1,5=1,45;
(Кф)D=( 1,4/0,75+ 1,05-1)/ 1,5=1,28.
Определяем пределы выносливости вала [4, c263]:
(у-1)D=у-1/(Ку)D; (ф-1)D=ф-1/(Кф)D; (7.2)
где у-1 и ф-1 - пределы выносливости гладких образцов при симметричном цикле изгиба и кручения, по табл.3. [4] у-1 = 380Н/мм2 , ф-1 ?0,58 у-1 =220Н/мм2;
Определяем коэффициенты запаса прочности по нормальным и касательным напряжениям 4, c263]:
sу=(у-1)D/ уа; sф=(ф-1)D/ фа. (7.3)
sу=262/ 22=12; sф=172/ 2,7=63,7.
Определяем общий коэффициент запаса по нормальным и касательным напряжениям [4, c263]:
(7.4)
где [s]=1,6…2,1 - допускаемый коэффициент запаса прочности.
Сопротивление усталости вала в сечении 3-3 обеспечивается, расчет остальных валов не проводим, т.к. расчет проведен на самом опасном сечении, и коэффициент запаса прочности значительно превышает допустимый.
8Выбор и проверочный расчет подшипников
Предварительно выбранные подшипниками с действующими на них радиальными нагрузками приведены в табл.7.
Таблица 7 Параметры выбранных подшипников
Быстроходный вал
Промежуточный вал
Тихоходный вал
№
101
105
106
d, мм
12
25
30
D, мм
28
47
55
В, мм
8
12
13
С, кН
5,07
11,2
13,3
Со, кН
2,24
5,6
6,8
RА, Н
323
405
2118
RБ, Н
117
1419
774
Подшипники устанавливаем по схеме «враспор». Пригодность подшипников определяем по условиям [4, c.129]:
Ср?С; Lр?Lh;
где Ср - расчетная динамическая грузоподъемность;
Lh - требуемая долговечность подшипника, для зубчатых редукторов Lh =10000ч.
; [4, c.129] (8.1)
где щ - угловая скорость соответствующего вала (см. табл.1);
где K - коэффициент безопасности; K =1,1…1,2 [4, табл.9.4]. Принимаем K =1,1.
V - коэффициент вращения, при вращении внутреннего кольца V=1
Kф - температурный коэффициент; Kф =1 (до 100єС) [4, табл.9.4].
Определяем расчетную долговечность подшипников в часах [4, c.129]:
(8.3)
Подставив значения в формулы (8.1)-(8.3) проверяем подшипники.
Для быстроходного вала:
RЕ=323х1,1=355Н;
- условие выполняется;
- условие выполняется.
Для промежуточного вала:
RЕ=1419х1,1=1560Н;
- условие выполняется;
- условие выполняется.
Для тихоходного вала:
RЕ=2118х1,1=2330Н;
- условие выполняется.
- условие выполняется.
Окончательные параметры подшипников приведены в табл.7.
Параметры выбранных подшипников
9 Выбор масла, смазочных устройств
Используем картерную систему смазывания. В корпус редуктора заливаем масло так, чтобы венец зубчатого колеса был в него погружен на глубину hм (рис.10):
hм max 0.25d2 = 0.25102 = 25,5мм;
hм min = 2m = 21,5 = 3мм.
При вращении колеса масло будет увлекаться его зубьями, разбрызгиваться, попадать на внутренние стенки корпуса, откуда стекать в нижнюю его часть. Внутри корпуса образуется взвесь частиц масла в воздухе, которым покрываются поверхности расположенных внутри корпуса деталей, в том числе и подшипники.
Рис.10 Схема определения уровня масла в редукторе
Объем масляной ванны принимаем из расчета 0,5 л на 1кВт передаваемой мощности V = 0,5Nдв = 0,50,25 = 0,125 л.
Контроль уровня масла производится жезловым маслоуказателем, который ввинчивается в корпус редуктора при помощи резьбы. Для слива масла предусмотрена сливная пробка. Заливка масла в редуктор производится через съемную крышку в верхней части корпуса.
Выбираем смазочный материал. Для этого ориентировочно рассчитаем необходимую вязкость:
где н50 - рекомендуемая кинематическая вязкость смазки при температуре 50°С;
н1 =170мм2/с - рекомендуемая вязкость при v=1м/с для зубчатых передач с зубьями без термообработки;
v=1,2м/с - окружная скорость в зацеплении
Принимаем по табл.10.29 [4] масло И-220А.
И для шестерни, и для зубчатого колеса выберем манжетные уплотнения типа 1 из ряда 1 по ГОСТ 8752-79. Установим их рабочей кромкой внутрь корпуса так, чтобы обеспечить к ней хороший доступ масла.
Список использованной литературы
1. Основы конструирования: Методические указания к курсовому проектированию/ Сост. А.А.Скороходов, В.А Скорых.-СПб.:СПбГУКиТ, 1999.
2. Дунаев П.Ф., Детали машин, Курсовое проектирование. М.: Высшая школа, 1990.
3. Скойбеда А.Т., Кузьмин А.В., Макейчик Н.Н., Детали машин и основы конструирования, Минск: «Вышейшая школа», 2000.
4. Шейнблит А.Е. Курсовое проектирование деталей машин: Учеб. пособие. - М.: Высш. шк., 1991
5. Анурьев В.И. Справочник конструктора-машиностроителя: В 3 т. -8-е изд. перераб. и доп. Под ред. И.Н. Жестковой. - М.: Машиностроение, 1999