Синхронные машины применяются во многих отраслях народного хозяйства, в частности, в качестве генераторов в передвижных и стационарных электрических станциях, двигателей в установках не требующих регулирования частоты вращения или нуждающихся в постоянной частоте вращения.
Наиболее распространена конструктивная схема синхронной машины с вращающимся ротором, на котором расположены явновыраженные полюсы. Иногда явнополюсные синхронные машины малой мощности выполняют по конструктивной схеме машин постоянного тока, то есть с полюсами, расположенными на статоре, коллектор заменяется контактными кольцами.
Синхронные двигатели серии СД2 и генераторы серии СГ2 изготавливают мощностью от 132 до 1000 кВт, при высоты оси вращения до 450 мм, в защищенном исполнении IP23, с самовентиляцией IC01, с частотой вращения от 500 до 1500 об/мин.
Электрические машины серий СД2 и СГ2 рассчитаны на продолжительный режим работы. Их возбуждение осуществляется от устройства, питающегося от дополнительной обмотки, заложенной в пазы статора.
Содержание
Введение
1. Исходные данные
2. Магнитная цепь двигателя. Размеры, конфигурация, материал
2.1 Конфигурация
2.2 Главные размеры
2.3 Сердечник статора
2.4 Сердечник ротора
2.5 Сердечник полюса и полюсный наконечник
3. Обмотка статора
4. Расчет магнитной цепи
4.1 Воздушный зазор
4.2 Зубцы статора
4.3 Спинка статора
44 Полюсы
4.5 Спинка ротора
4.6 Воздушный зазор в стыке полюса
4.7 Общие параметры магнитной цепи
5. Активное и индуктивное сопротивление обмотки статора для установившегося режима
6. Расчет магнитной цепи при нагрузке
7. Обмотка возбуждения
8. Параметры обмоток и постоянные времени. Сопротивления обмоток статора при установившемся режиме
8.1 Сопротивления обмоток статора при установившемся режиме
8.2 Сопротивление обмотки возбуждения
8.3 Переходные и сверхпереходные сопротивления обмотки статора
8.4 Сопротивления для токов обратной и нулевой последовательности
8.5 Постоянные времени обмоток
9. Потери и КПД
10. Характеристики машин
10.1 Отношение короткого замыкания
11. Тепловой расчет синхронной машины
11.1 Обмотка статора
11.2 Обмотка возбуждения
11.3 Вентиляционный расчет
12. Масса и динамический момент инерции
12.1 Масса
12.2 Динамический момент инерции ротора
13. Механический расчет вала
Литература
Введение
Синхронные генераторы применяются в передвижных и стационарных электрических станциях. Наиболее распространена конструктивная схема генераторов с вращающимся ротором, на котором расположены явновыраженные полюса. Генераторы серии СГ2 изготавливаются мощностью от132 до 1000 кВт при высоте оси вращения до 450 мм, в защищенном исполнении IP23, с самовентиляцией IC01, с частотой вращения от 500 до 1500 об/мин.
В журнале “Электричество” №8 2004г. ученым Ороняным Р. В. предложен метод, позволяющий с достаточной для инженерных расчетов точностью вычислять значение экстремальных отклонений напряжений автономного синхронного генератора при сбросе - набросе нагрузки. Зная экстремальные изменения напряжения, можно с помощью полученных в статье формул рассчитать значение индуктивных сопротивлений по поперечной оси генератора хq и x'q..
В журнале “Электричество” №10 2004г. ученым Джендубаевым А.-З.Р представлена математическая модель позволяющая исследовать динамические и статические режимы асинхронного генератора с учетом потерь в стали статора и фазного ротора. В широком диапазоне изменения скольжения учет потерь а стали фазного ротора повышает точность расчета.
В обзоре докладов 23 сессии СИГРЭ (1970) рассматривается актуальные вопросы создания и работы синхронных генераторов большой мощности и их систем возбуждения.
В книге Абрамова А. И. “Синхронные генераторы” рассмотрены основные свойства и поведение синхронных генераторов при различных режимах работы, возникающих во время эксплуатации. Даны требования к системам возбуждения и показана необходимость введения форсировки возбуждения не всех синхронных машинах в целях повышения устойчивости работы энергосистемы. Рассмотрены вопросы нагрева обмоток при установившихся режимах и при форсировках возбуждения. Подробно рассмотрен асинхронный режим работы генераторов включая вопросы асинхронного пуска, даны методы расчета и приведены опытные данные.
1. Исходные данные
Данные для проектирования
Назначение
Генератор
Номинальный режим работы
Продолжительный
Номинальная отдаваемая мощность Р2, кВт
30
Количество фаз статора m1
3
Способ соединения фаз статора
Y
Частота напряжения f, Гц
50
Коэффициент мощности cos ц
0,8
Номинальное линейное напряжение Uл, В
400
Частота вращения n1, об/мин
1500
Способ возбуждения
От спец. обмотки
Степень защиты от внешних воздействий
IP23
Способ охлаждения
IC01
2. Магнитная цепь машины. Размеры, конфигурация, материалы
2.1 Конфигурация
Принимаем изоляцию класса нагревостойкости F
Количество пар полюсов (9/1)
р=60f/n1=60•50/1500=2
Индуктивное сопротивление рассеяния обмотки статора (рисунок 11.1)
ху*=0,08 о.е.
Коэффициент мощности нагрузки (11.1)
кн=
Предварительное значение КПД (рисунок 11.2)
з'=0,88 о.е.
2.2 Главные размеры
Расчетная мощность (1.11)
Р'=кнР2/cosц=1.05•30/0,8=39.4 кВт.
Высота оси вращения (таблица 11.1)
h=225 мм.
Допустимое расстояние от корпуса до опорной поверхности (таблица 9.2)
h1=7 мм.
Наружный диаметр корпуса (1.27)
Dкорп=2(h-h1)=2(225-7)=436 мм.
Максимально допустимый наружный диаметр сердечника статора (таблица 9.2)
Dн1max=406 мм.
Выбираемый диаметр сердечника статора (§ 11.3)
Dн1=406 мм.
Внутренний диаметр сердечника статора (§ 11.3)
D1=6+0,69·Dн1=6+0,69•406=286 м.
Предварительное значение линейной нагрузки статора (рис. 11.3)
А'1=220 А/см.
Предварительное значение магнитной индукции в воздушном зазоре и номинальном режиме (рисунок 11.4)
В'б=0,77 Тл.
Предварительное значение максимальной магнитной индукции в воздушном зазоре машины при х.х. (11.3)
В'б0=В'б/кн=0,77/1,05=0,73 Тл.
Полюсное деление статора (1.5)
мм.
Индуктивное сопротивление машины по продольной оси (рис. 11.5)
хd*=2.5 о.е.
Индуктивное сопротивление реакции якоря по продольной оси (11.4)
хad*=хd* - ху*=2,5-0,08=2,42 о.е.
Коэффициент, учитывающий наличие зазоров в стыке полюса и сердечника ротора или полюсного наконечника и полюса (§ 11.3)
к'=1,07
Расчетная величина воздушного зазора между полюсным наконечником и сердечником статора (11.2)
мм.
Уточненная величина воздушного зазора (§ 11.3)
б=1 мм.
Форма зазора концентричная по рисунку 11.8
Коэффициент полюсной дуги для пакетов с широкими полюсными наконечниками
аш=0,77 (§ 11-3)
Радиус очертания полюсного наконечника
Действительная ширина полюсной дуги в сечении пакета с широкими полюсными наконечниками
Ширина полюсного наконечника, определяемая хордой в сечении пакета с широкими полюсными наконечниками
Отношение b'Y/b'ш
b'Y/b'ш=0.48
Ширина полюсного наконечника, определяемая хордой в сечении пакета с узкими полюсными наконечниками
Действительная ширина полюсной дуги в сечении пакета с узкими полюсными наконечниками
Действительный коэффициент полюсной дуги для пакетов с узкими полюсными наконечниками
Коэффициент полюсной дуги : средний и расчетный
2.3 Сердечник статора
Марка стали 2013, изолировка листов оксидированием, толщина стали 0,5 мм.
где m'т=1,48 - коэффициент для класса нагревостойкости изоляции В § 5.1.
Условная внутренняя поверхность охлаждения активной части статора (9.379)
Sn1=D1l1=М286М160=1,44*105 мм2.
Условный периметр поперечного сечения (9.381)
П1=2hn1+b1+b2 =2,25+12,7+15,7=78,4 мм.
Условная поверхность охлаждения пазов (9.382)
Sи.п1=z1П1l1=42М78,4М160=5,27*105 мм2.
Условная поверхность охлаждения лобовых частей обмотки (9.383)
Sл1=4D1l1=4ММ286М188=3,16*105 мм2.
Условная поверхность охлаждения двигателей с охлаждающими ребрами на станине (9.384)
Sмаш=Dн1(l1+2lп1)= М406(160+2М88)=4,26*105 мм2.
Удельный тепловой поток от потерь в активной части обмотки и от потерь в стали, отнесенных к внутренней поверхности охлаждения активной части статора (9.386)
рп1= Вт,
где к=0,84 - коэффициент (таблица 9.25).
Удельный тепловой поток от потерь в активной части обмотки и от потерь в стали, отнесенных к поверхности охлаждения пазов (9.387)
ри.п1= Вт.
Удельный тепловой поток от потерь в активной части обмотки и от потерь в стали, отнесенных к поверхности охлаждения лобовых частей обмотки (9.388)
рл1== Вт.
Окружная скорость ротора (9.389)
v2= м/с.
Превышение температуры внутренней поверхности активной части статора над температурой воздуха внутри машины (9.390)
tп1=42 С,
где 1=16М10-5 Вт/мм2Мград - коэффициент теплоотдачи поверхности статора.
Перепад температуры в изоляции паза и катушек из круглых проводов (9.392)
tи.п1= C.
Превышение температуры наружной поверхности лобовых частей обмотки над температурой воздуха внутри двигателя (9.393)
tл1=рл1/1=3,1*10-3/16М10-5=20 C
Среднее превышение температуры обмотки над температурой воздуха внутри двигателя (9.396)
t'1=(tп1+tи.п1)+(tл1+tи.п1) = (42+4,2)+ (20+13,1) C.
Потери в двигателе, передаваемые воздуху внутри машины (9.397)
Р'У=к(Р'м1+РсУ)+Р'м1+Р'м2+РмхУ+Рд=0,84
(15353360 Вт.
Среднее превышение температуры воздуха внутри двигателя над температурой наружного воздуха (9.399)
tв= C.
Среднее превышение температуры обмотки над температурой наружного воздуха (9.400)
t1=t'1+tв=37,6+6,2=43,8 C.
11.2 Обмотка возбуждения
Условная поверхность охлаждения многослойных катушек из изолированных проводов (11.249)
Sп2=2рlср.пhк=4•623•53=13,2*104 мм2.
Удельный тепловой поток от потерь в обмотке, отнесенных к поверхности охлаждения обмотки (11.250)
рп=кРп/Sп2=0,9•684/13,2*104=47*10-4 Вт/мм2.
Коэффициент теплоотдачи катушки (§ 11.13)
Т=6,8•10-5Вт/(мм2 C).
Превышение температуры наружной поверхности охлаждения обмотки (11.251)
tпл=рп/Т=47*10-4/6,8*10-5=69 C.
Среднее превышение температуры обмотки над температурой воздуха внутри машины (11.253)
tB2=t'n+tип=69+12=81 С.
Среднее превышение температуры обмотки над температурой охлаждающего воздуха (11.254)
tп=t'п+tв=81+6,2=87 С.
11.3 Вентиляционный расчет
Необходимый расход воздуха (5.28)
Vв=м3/с.
Z1=600
Наружный диаметр вентилятора
мм
Внутренний диаметр колеса вентилятора
мм
Длина лопатки вентилятора
мм
Количество лопаток вентилятора
Линейные скорости вентилятора по наружному и внутреннему диаметрам соответственно:
м/с
м/с
Напор вентилятора
Па
Площадь поперечного сечения входных отверстий вентилятора
мм2
Максимальный расход воздуха
м3/с
Действительный расход воздуха
м3/с
Действительный напор вентилятора
Па
12. Масса и динамический момент инерции
12.1 Масса
Масса стали сердечника статора (11.255)
mс1У=mз1+mс1=11,9+50=61,9 кг.
Масса стали полюсов (11.256)
mсп=7,8•10-6ксlп(bпh'п+ккbнпhнп)2р=7,8•10-6•0,97•170 (78•65+0,7•162•28)•4 = 42,4 кг.
Масса стали сердечника ротора (11.257)
mс2=6,12кс10-6l1[(2,05hс2+D2)2-D2]=6,12•0,97•10-6•170[(2,05•13+72)-722]=4,6 кг.
Суммарная масса активной стали статора и ротора (11.258)