рефераты курсовые

Триботехнічні властивості: зносостійкість, зношування, тертя, покриття, залишкові напруги детонаційно-газових покриттів

p align="left">3.6 Дослідження триботехнічних характеристик композиційних покрити, що містять MoS2, у нормальній атмосфері

Випробування на зносостійкість детонаційно-газових покриттів , що містять дисперговані дисульфід молібдену, проводили на установці УМТ-1 (схема контакту " торець-торець") при зміні швидкості ковзання від 0,1 до 1,0 м/с і навантаженню 5 мпа. Залежність інтенсивності зношування від навантаження досліджували при постійній швидкості ковзання - 0,8 м/с. Для дослідження сумісності матеріалів, що в задані на грузочно - швидкісних режимах тертя забезпечують стійкий прояв структурної при торканні, детонаційно-газові покриття з MoS2 випробували, як в однойменних парах тертя, так і в парах з гартівними сталями 45,ХВГ, 30ХГСА й бронзою Бр ОЦС-6-6-3. Вплив швидкості ковзання на інтенсивність зношування, коефіцієнт тертя й температуру в контактній зоні покрити, що містять тверде змащення, представлену на мал. 3.6.1.

Рис. 3.6.1. Вплив швидкості ковзання на інтенсивність зношування, коефіцієнт тертя й температуру покрити системи Fe-Мn із уведенням Mo2:1 - інтенсивність зношування; 2 - коефіцієнт тертя; 3 - температури.

Як видне, що незважаючи на підвищення температури в зоні тертя, збільшення швидкості ковзання приводить до зниження інтенсивності зношування й коефіцієнта тертя. На всьому діапазоні швидкостей ковзання коефіцієнт тертя перебуває в межах 0,15 - 0,06. Існують багато гіпотез, які пояснюють низьке значення коефіцієнта тертя мастильних матеріалів і, зокрема , Mo2. У роботі [15] запропонована модель механізму мастильної дії, відповідно до якої антифрикційність твердих ламелярних речовин залежить від енергії зв'язку між площинами, характеру адсорбційної взаємодії, яка визначає зміна поверхневої енергії. Однак виражені припущення недостатні для пояснення всього різноманіття відомих експериментальних фактів (наприклад ефекту "аномально низького" тертя MoS2). Аналіз існуючих вистав про механізми тертя ламелярних твердих мастильних матеріалів і даних експериментальних досліджень дозволили затверджувати, що поверхнева енергія площин базису (0001) дисульфіду молібдену вкрай мала, а взаємодія між окремими шарами

S-Mo-S дуже слабке. Звідси випливає, що дисульфіду молібдену винний забезпечувати досить низькі значення коефіцієнта тертя без участі адсорбуючих атомів або молекул. Більше того, адсорбція в атмосферних умовах речовин, які вступають у взаємодію із сіркою, а тим більше з атомами опозиційно розташованих шарів сірки, винна стримувати переміщення шарів друг щодо друга. Численні експериментальні дані представляють таку точку зору. Так, відомо, що на відміну від графіту, дисульфіду молібдену володіє у вакуумі вищими антифрикційними властивостями . На нашу думку , є розбіжності в описі основного механізму мастильної дії ламелярних матеріалів не перебувають у протиріччі, а скоріше підтверджують більшу складність розглянутого синергетичного явища. На рис. 3.6.2 представлена залежність мікротвердості покриття від змісту MoS2. Однак, незважаючи на те, що введення диспергованих часток MoS2 до складу покриття знижує мікротвердість, зносостійкість його суттєво росте. Таким чином, максимальна твердість не завжди відповідає високої зносостійкості. Тому що зносостійкість у переважній більшості випадків виявляє собою інтегральну характеристику складної взаємодії різних факторів у процесі тертя.

Рис. 3.6.2. Залежність мікротвердості покриття від змісту MoS2.

Утвір плівки MoS2 у процесі тертя супроводжується заповненням нерівностей, завдяки чому збільшується загальна контактна поверхня. Металографічне вивчення зовнішнього вигляду поверхні тертя показало, що при цьому формується шар мастильної плівки MoS2, у самих тонких поверхневих шарах, які відбувається інтенсивна й спрямована пластична деформація. На далі, внаслідок комплексу скороминучих динамічних процесів контактної взаємодії, під впливом локальних температур і лещат утворюється гетерогенна структура. Вона складається з м'якої плівки дисульфіду молібдену й твердих фаз складених окислів металів, які входять до складу покриття (Cr2O3, Al2O3, Fe3O4). Таким чином, частки окислів, втілюючись до м'якої ламелярної структури MoS2, викликають різке припинення й запобігають їхній пластичній деформації. Що, у свою чергу, обумовлює стрімке зниження рівня енергії трибоактивації. Мікрофотографія розподілу MoS2, знята в рентгенівських променях на мікроаналізаторі "Самека" моделі МS-46, наведена на мал. 4.6. Частки твердого масла розподіл достатній рівномірно. Стабільність здійснення ефекту самозмазування в процесі тертя досягається внаслідок поновлення шару тертя масла за рахунок Mos2, який вході до складу матеріалу покриття. Дослідження показали, що локалізація пластичної деформації в процесі тертя йде в самих тонких поверхневих шарах плівок і виявляє собою структури на зразок "луска" з товщиною 2-5 мкм. Відповідно до принципів термодинаміки, взаємодії під час тертя йдуть у мінімальних обсягах, у цьому випадку - тонких плівках зі структурою типу "луска", які здатні до свого руйнування поглинати максимальну енергію. Рис. 3.25. Мікро рентгеноструктурний аналіз покриття в рентгенівському характеристичному випромінюванні Mos2Kб (x650). Стан, характер і властивості робочого шару, який виникає безпосередньо в процесі тертя, обумовлюється процесами диспергировання, механіко-хімічного насичення частинами окислів, інтерметалідів, їх змішумання з матеріалами твердого масла й утвором нових фаз, з характеристиками й структурою, яка аналогічна зміцненим-дисперсно-укріпленим матеріалам. Таким чином, у період постійного процесу механіко-хімічного тертя, який характеризується мінімальними коефіцієнтами тертя й зносу. Поверхневий шар, який розділяє трибоповерхню , складається із дрібнодисперсної суміші окислів металів, інтерметалідів розподілених тонкому шару твердого масла.

У роботах є спроба альтернативного пояснення механізму мастильної дії ламелярних твердих масел, у якій зниження коефіцієнта тертя зі збільшенням навантаження пояснюється тим, що підвищення навантаження полегшує умови для найбільш сприятливої орієнтації часток MoS2. Дана залежність, обумовлена силами міжмолекулярної взаємодії: збільшення навантаження тягне зближення молекул MoS2, що веде до росту сил відштовхування й, як наслідок цього, до зниження опору при зрушенні. У дослідженні навпаки, констатується, що при підвищенні навантаження коефіцієнт тертя по твердій плівці MoS2 небагато збільшується. Більша працездатність вивчаємих композиційних покриттів з MoS2, досягається завдяки зменшенню рівня структурної активації поверхневих шарів, внаслідок регуляції властивостей у вторинних структур, що обладнаною затримкою знаходження кисню до поверхні, яка пластично деформується, високим ступенем орієнтації часток дисульфіду молібдену в процесі тертя. А також, особливістю структури покриттів і, як наслідок, високої локалізації пластичної деформації в надтонких шарах твердого масла. На мал. 3.27 наведена електронна світлина вторинної структури на покритті з легованого заліза з MoS2. Вторинна структура гетерогенна, характер розподілу дисперсних включень сорочечний і має орієнтацію в напрямку вектора швидкості ковзання. Ця обставина є підтвердженням того, що при формуванні вторинних структур вирішальну роль відіграють процеси структурної активації. По своїй будові дана структура близька до структури дисперсно-зміцненого композиційного матеріалу. Як відомо, такі матеріали мають унікальне з'єднання високої пластичності, міцності й мають високу стабільність характеристик в умовах експлуатації.

Таким чином, введення диспергованого дисульфіду молібдену до складу композиційного покриття з легованого заліза забезпечує ефективне змащення поверхонь у контакті. На трибоповерхнях утворюється захисна плівка на основі MoS2, які в процесі тертя постійно відновляється й обновляється. Наявність поділяючий плівки твердого масла забезпечує мінімізацію триботехнічних параметрів і належний рівень антифрикційних характеристик покриттів, які досліджувалися.

3.7 Оцінка рівня залишкових напруг у поверхневих шарах досліджуваних покрити

Покрити який формуються при детонаційно-газовому напиленні мають складну геометрію структурних складових і насичені неоднорідністю. У процесі напилення виникають термічні й структурні напруги, які створюють певний стан покриття. Тобто такі покриття відрізняються від компактних матеріалів дуже складною геометрією структурних складових. Напилення викликає виникнення цілого ряду неоднорідностей, таких як внутрішні границя п'яти типів, порушення стехіомерії складу, фазові розбіжності багатьох часток. Крім того, має місце деформація часток, яка супроводжується дробленням периферійних зон. При цьому кількість структурних дефектів, їх загальний вплив на характеристики залежить головним чином від фізико-хімічних властивостей порошкових матеріалів і умов нанесення покрити, а визначальної стає залежність міцності й пластичності від товщини покриття. Тому що процеси детонаційно-газового напилення характеризуються широким діапазоном швидкостей охолодження послідовних потоків часток, які формують покриття. Швидкість охолодження перших шарів, які осаджуються, - 106-108°С шари, що випливають, осаджуються на розігріті до 200-350 С напилюванні поверхні й прохолоджуються з меншою швидкістю. Температурні градіенти викликають термічні напруги, що з одного боку, з'єднуються з навантаженнями, які викликані розбіжностям коефіцієнтів термічного розширення, а, з іншого боку, виникненням навантаження, що обумовлені структурними перетвореннями, зміною питомих обсягів фаз при поліморфних переходах, дифузією й хімічними реакціями. Крім того, швидкість охолодження також є однією із причин структурної неоднорідності й появи дефектів. Таким чином, поверхневе руйнування покрити може відбуватися під впливом не тільки напруга, що виникають у процесі пружно-пластичний деформації при терті, але й залишкових напруг, що виникають у покриттях у процесі його формування. У цілому можна допустити, що напилення покрить з'єднане з реалізацією певного напруженого стану, який обумовлює експлуатаційні можливості всієї системи тертя. Як показує аналіз умов роботи деталей машин з покриттями, втрата працездатності відбувається в основному не від несумісності системи покриття - навколишнього середовища - покриття, а завдяки руйнуванню покриття, за розрахунків утвір поверхневих тріщин . При дослідженнях покрити на відрив величина й розподіл залишкових напруг значною мірою впливають на зниження міцності зчеплення , а характер руйнування є функцією властивостей досліджуваного покриття.

3.8 Величина й рівень технологічних залишкових напруг і їх вплив на зносостійкість напилених покриттів

Рівень залишкових напруг є в багатьох випадках важливим параметром, який визначає якість детонаційно-газових покрить. Так, при дослідженні на відрив наявність цих напруг значно впливає на зниженні міцності зчеплення . Визначення міцності зчеплення покрити, як відзначалося, робили за допомогою спеціальних зразків, які складаються із втулки й штифта . Після попередньої підготовки поверхні (піскоструминної обробки й знежирення) напиляють покриття. Потім звільняють фіксуючий гвинт і відриваються штифт від покриття. Знаючи силу відриву й площа торця штифта, визначають міцність зчеплення (рис. 3.8.1). У якості - підбивки була використана сталь 45.

Рис. 3.8.1. Залежність міцності зчеплення від товщини напилюваного покриття.

Збільшення товщини покриття до 0,18 - 0,20 мм веде монотонного збільшенню зусилля, яке необхідне для відриву штифта, і після досягнення величини 100 мПа наступне наростання товщини супроводжується зменшенням міцності зчеплення. Причини, які приводять до наявності максимуму на кривій бсц=f(д), на наш погляд, обумовлюються тим, що в області малих товщин має місце, переважно, когезійне руйнування. Таким чином, значення, отримані при іспитах, у певної мерові відбивають не міцність зчеплення, а міцність самого покриття, підтверджуючи тим самим, що при детонаційному напиленні ступінь взаємодії близький до одиниці . Мала товщина напиляного шару (0,1 мм) викликає прорив покриття, при збільшенні товщини міцність зчеплення небагато росте, але залишається незначної й при іспитах має місце деформація напиляного шару над штифтом, його прогин і розтріскування. У результаті росту товщини покриття відбувається придушення цих явищ, яке виражається в збільшенні фіксуємої при іспитах міцності. У той же час збільшення товщини покриття супроводжується наростанням внутрішніх напружень у системі покриття - основа, результатом чого є зниження міцності зчеплення. І руйнування при цьому, як правило, носить адгезійний характер. Таким чином, працездатність і довговічність детонаційних покрити залежить від величини й характеру розподілу залишкових напруг. Високі значення залишкових напруг є причиною появи або мікротріщин відшарування покрити. Однак, незважаючи на формальну ясність основних фізичних процесів, які викликають залишкові напруги в напилюваних покриттях, тепер , хоча й існує відносно велика кількість різних залежностей, які дозволяють розрахувати залишкові напруги, застосовувати їх повною мірою неможливо через безліч допущень, які вводяться, наслідком яких є неточність обчислень. У науково-дослідних роботах, присвячених характеристикам детонаційних покрити, дуже обмежені зведення про технологічні залишкові напруги, що розкривають якісні залежності зносостійкості, відсутні дані про вплив термічної обробки на їхні величини й розподілу. Структуроутворення при формуванні детонаційних покрити підкоряється загальним закономірностям, характерним для напилюємих покрить.Одним з методів вивчення, які зарекомендували себе, технологічних залишкових напруг є методом Н. Н. Давиденкова, що дозволяє визначати характер розподілу, глибину залягання й величину залишкових напруг у досліджуваних покриттях . Метод Н. Н. Давиденкова дозволяє визначити характер розподілу залишкових напруг, їх величину й глибину залягання за допомогою приладу, що дозволяє записувати зміни стріли прогину зразка в процесі невпинного підбурювання напиляного шару. Зняття шарів матеріалу здійснювалося за допомогою електролітичного травлення, склад, концентрація й режим підбиралися так, щоб швидкість травлення становила 3-5 мкм/хв, при цьому напруга на електродах відповідало 10 В, щільність струму - 15 А/дм2, а температура електроліту 25 °С. Склад електроліту - 850 див3 фосфорної кислоти (питома вага 1,56), 150 див3 - сірчані кислоти (питома вага 1,89) і 50 м хромового ангідриду. Поверхні зразка, які не повинні піддаватися травленню, захищалися сумішшю парафіну й каніфолі (2:1). Невпинний запис прогину здійснювався за допомогою індуктивного датчика й передавалася на самопис БВ-662, де фіксувалася залежність прогину від часу. Наконечник датчика опирався на корундову пластину - опору діаметром 4 мм і товщиною 1,5 мм Досліджувані залишкові напруги значно змінюються в межах поверхневих шарів. У цьому випадку для одержання належної точності потрібно послідовне видалення дуже тонких шарів. Ініційоване цим видаленням перерозподіл напруг викликає переміщення, яке можна замірити, а потім обчислити залишкові напруги в питомій частині. Дуже важливим є також точне обчислення величин. Зразки для визначення залишкових напруг мали форму пластин з розмірами: товщина - 2-3 мм, ширина 10-12 і довжина 50-60 мм У дослідженнях визначалися напруги 1 роду - макронапруги, які виникають у детонаційних покриттях у результаті взаємодії різних технологічних факторів при його формуванні. При детонаційно-газовому напиленні покрити, що рухаються з великою швидкістю частки, нагріті до високої температури, послідовно нашаровуються після кожного пострілу спочатку на поверхню основи, потім на вже нанесені частки, що значно остигають. У процесі напилювання значного підвищення температури не відбувається, що тому прохолоджуються після удару частки стискуються більше, ніж метал основи, у результаті цього при нормальній температурі в напиляному гетерогенному шарі покриття виникають технологічні залишкові напруги, що залежно від ряду факторів можуть бути що розтягують, що стискають або ж змінними за знаком.

3.9 Розподіл технологічних залишкових напруг по товщині детонаційних покрити

У результаті досліджень були визначені й проаналізовані розподіли залишкових напруг по товщині композиційних покрити на основі нікелю й заліза. Відповідно до методики іспитів для побудови однієї кривій розподілу напруг по глибині покриття було досліджено по трьом зразка, тому що розкид даних усередині однієї партії в значній мірі залежить від напляємих матеріалів. Найменший розкид при іспитах мали зразки з композиційним покриттям на основі карбідів, а найбільший розкид усередині партії відповідав покриттям на основі нікелю й заліза. Природно допустити, що менший розкид напруг усередині партії покрити на основі карбідів обумовлений протіканням активних дифузійних процесів у цій композиції, яка підтверджується результатами структурних і фазових досліджень. Відповідно для композицій на основі нікелю й заліза навпаки, їхні матеріали найбільш чутливі до технологічних параметрів детонаційно-газовому напилюванню. Для детонаційних покрити на основі заліза й нікелю залежність залишкових напруг характеризується високими значеннями, які розтягують, у результаті утвору нових структурних фаз, які відрізняються питомими обсягами, що й приводить до виникнення напруженого стану областей, зайнятих знову утворювалися й пов'язаними з ними фазами. Напруги, що виникають у результаті зміни обсягів фаз, градієнтів концентрації елемента, який дифундує, можуть також досягати - величин, при яких з'являються пластичні або деформації тріщини . Необхідно підкреслити, що в більшості випадків експлуатації варто прагнути до напруг стиску в покриттях як найбільш безпечним. На рис. 3.9.1 представлені графіки розподілу залишкових напруг покрити на основі заліза. Максимум залишкових напруг небагато зміщений від поверхні усередину покриття. Зі збільшенням товщини покриття величина залишкових напруг росте. Зі збільшенням глибини залягання залишкових напруг їх величини зменшуються.

Рис. 3.9.1. Розподіл залишкових напруг у покриттях на основі заліза залежно від товщини:

1 - 100 мкм; 2 - 200 мкм; 3 - 300 мкм.

Зразки, напилені композиційним порошком на основі нікелю, також досліджувалися залежно від товщини покрити, що становила 200, 300, 400 і 500 мкм. Іспиту цієї партії зразків показало, що в зразках при всій товщині покрити спостерігається залишкова напруга, що розтягують.

Як випливає з графіків характеру розподілу залишкових напруг, максимум залишкових напруг перебуває на деякій відстані (40-80 мкм) від поверхні. Зі збільшенням глибини їх залягання, після максимуму, різко падає. Поблизу основи зразка величина напруг сходить на немає. Глибина залягання, в основному, відповідає товщині покриття.

Таким чином, величина залишкових напруг значно росте при збільшенні товщини напилюваних покрить.

3.9.1 Вплив термічної обробки на величину й розподіл залишкових напруг у покриттях

Однієї з найбільш доступних і ефективних в умовах виробництва технологічних операцій для зняття залишкових напруг є термічна обробка - відпалу, у результаті якого змінюються величина й характер розподілу залишкових напруг, Зміна в розподілі тем помітніше, чим вище температура відпалу. Відпал досліджуваної партії зразків проводився при температурах 300, 400 і 600 оC.

Характер розподілу залишкових напруг після відпалу при температурі 300 оC представлений на малюнку. Величина напруг помітно зменшилася, особливо різко зменшуються напруги в покриттях більших товщин. Крім того, у покриттях малих товщин зі збільшенням глибини залягання залишкові напруги, що розтягують, переходять у стискаючі. Глибина залягання залишкових напруг також в основному відповідає товщині покриття.

Характер розподілу залишкових напруг після відпалу при температурі 400 оC змінюється ще більше (малий.5.6). У цьому випадку величина напруг продовжує зменшуватися й при товщинах покрить менш 0,5 мм вони переходять у стискаючі. Величина стискаючих напруг тим більше, чим менше товщина покриття. Зі збільшенням глибини залягання величини напруг зменшуються й поблизу поверхні сходять на немає.

Рис. 3.9.1.2. Розподіл напруг після отжига (400 оС). Товщина: 1-200 мкм; 2-300 мкм; 3-400 мкм; 4-500 мкм.

Підвищення температури отжига до 600 єС приводить до наступного перерозподілу залишкових напруг у бік зменшення їх абсолютної величини. Це презентовано на рис. 3.9.1.3. Зменшилися залишкові напруги, що розтягують, при більших товщинах, зменшилися майже вдвічі стискаючі напруги. Таким чином, при цій температурі відпалу величина напруг у порівнянні з не відпаленими зразками набагато нижче.

Рис. 3.9.1.3. Розподіл напруга після отжига (6ОО ?С). Товщина: 1-200 мкм; 2-300 мкм; 3-400 мкм; 4-500 мкм.

Знак залишкових напруга багато в чому залежить від з'єднання коефіцієнтів термічного розширення матеріалів основи й покриття [206]. Коли коефіцієнт термічного розширення напилюваного матеріалу рівняється або більше коефіцієнта термічного розширення основи, у напиленому покритті виникають залишкові напруги, що розтягують. В інших випадках можуть виникати стискаючі залишкові напруги. При напилюванні покриття на основі заліза зразок з вуглецевої конструкційної сталі 45 різниця в коефіцієнтах термічного розширення незначно. Ніж тонше шар покриття, тем менше різниця в прилягаючих шарах покриття й основи. Отже, зі збільшенням товщини напилюваного шару буде, в основному, виявлятися різниця в коефіцієнтах термічного розширення в розмірах нагрітих і охолоджених часток і у вже напилюваних шарах, що значно остигають. Тому зі збільшенням товщини покриття залишкові напруги ростуть. Це погодиться з розподілом залишкових напруг. Термічна обробка зразків при різних температурах приводить до перерозподілу залишкових напруг. Зі збільшенням температури відпалу характер розподілу залишкових напруг змінюється. Спостерігається помітне зменшення залишкових напруг спочатку в більш товстих покриттях, а потім і в більш тонких покриттях, коли напруги із що розтягують переходять у стискаючі. Як відомо, будучи важливою характеристикою стану поверхневих шарів деталей машин, внутрішні напруження розтягування знижують тимчасовий опір, а напруги стиску можуть збільшувати втомну міцність, аналогічне явище внутрішні напруження роблять на границю витривалості. Таким чином, на підставі проведених іспитів можна зробити висновок про те, що в поверхневих шарах, підданих зміцненню шляхом детонаційно-газового напилення, виникають залишкові напруги, що по своїй абсолютній величині не небезпечні для поверхневого шару з погляду його цілісності і якості. Оптимальна товщина напилюваних детонаційних покрить, відповідає максимальної зносостійкості, становить 180-250 мкм.

При збільшенні товщини напилюваних покрить росту залишкових напруг можна значно знизити шляхом термічної обробки, у процесі якої напруги, що розтягують, переходять у стискаючих, що позитивно відбивається на експлуатаційний характеристиках покрити.

Розділ 4. Охорона праці

4.1 Небезпечні й шкідливі виробничі фактори під час напилення композиційних матеріалів

Процес напилення матеріалів супроводжується такими виробничими факторами як:

а) Фізичні:

- рухомі частини виробничого обладнання;

- рухомі вироби, заготовки, матеріали;

- підвищений рівень шуму на робочому місці;

- гострі кромки, задирки і шорсткість на поверхнях заготовок, інструментів та обладнання.

б) Хімічні:

утворення токсичного пилу.

При використанні технології напилення композиційних матеріалів мають місце такі виробничі фактори, що можуть привести до отримання травм через необережність та недостатню освітленість робочого місця. Рівень шуму від приладу напилення композиційних матеріалів не перевищує гранично допустимого рівня шумового забруднення, але, через наявність детонаційного вибуху в умовах виробництва, рівень шуму на робочому місці складає 90 дБ. Рівень шуму є досить високим для створення дискомфортних умов праці та може призвести до втрати слуху. Шум є постійним фактором, якого не можна уникнути.

Утворення пилу, при напилення композиційних матеріалів, що в своєму складі мають токсичні складові (малонебезпечні та помірнонебезпечні) є постійним фактором. Наявність шкідливих речовин в повітрі робочої зони при наявності справної вентиляції не перевищує норми.

4.2 Технічні й організаційні заходи щодо зменшення рівня впливу небезпечних і шкідливих виробничих факторів при роботі з підвищення зносостійкості деталей

Для уникнення травматизму приміщення та обладнання повинно триматися в чистоті і порядку, не допускаючи нічого зайвого, що заважає на робочому місці, а також в проходах і проїздах цеху де розміщене обладнання. Деталі та заготовки слід тримати в стійкому положенні на підкладках і стелажах, висота штабелів не повинна перевищувати півтори ширини чи півтора діаметра підставки штабеля і у всіх випадках не повинна бути більше 1 м. Також необхідним є дотримання обережності та уваги при роботі з приладом напилення композиційних матеріалів, що встановлений на токарному станку. Освітлення робочого місця повинно бути справним. При використанні люмінесцентних ламп для освітлення приміщення, частини обладнання, що обертаються повинні бути підсвічені лампами розжарювання.

Для уникнення ураження електричним струмом при роботі та проведені профілактичних операцій на устаткуванні електроіскрового легування необхідно застосовувати гумові рукавички та килимки. Використання заземлення та занулення установки напилення композиційних матеріалів є обов'язковим для унеможливлення отримання електротравм.

Наявність суттєвого шумового забруднення при виробництві з використанням технології напилення композиційних матеріалів вимагає використання робочим персоналом шумозахисних навушників, шумозахисних екранів та за можливості обмежити час перебування персоналу в робочій зоні за рахунок використання автоматизованих виробничих ліній.

При напиленні композиційних матеріалів в повітря робочої зони виділяється аерозолі та пари таких шкідливих речовин як оксиди алюмінію, титану, нікелю, міді, цинку та інших речовин, що відносяться до малонебезпечних та помірнонебезпечних речових. Концентрація цих речовин одно направленої дії при їх одночасній наявності в повітрі робочої зони неповинна перевищувати ГДК. Сума відношення вмісту кожного з них та їх ГДК неповинна перевищувати одиниці. Так як наявна система вентиляції виробничого приміщення сприяє дотримання цих вимог, додаткові заходи для безпеки робочого персоналу непотрібні.

4.2.1 Розрахунки занулення електроустановок

Під час роботи з підвищення зносостійкості деталей усі установки живляться від електричної напруги, а отже персонал, який працює біля установок можуть одержати електротравми зокрема - безпосереднє доторкання до струмопровідних частин електроустановок під напругою. Таке доторкання може відбутися при несправності пристроїв, які обгороджують, при помилкових діях персоналу, якщо роботи виконуються поблизу або безпосередньо на струмопровідних частинах, які перебувають під напругою, а також з появою напруги (у результаті помилкової подачі) на колись відключених електроустановках і ділянках мережі.

Адже буде доцільно в даній роботі усунути небезпеку поразки людей електричним струмом при пробої на корпус попередньо зробивши розрахунки занулення установок. Мета занулення - усунення небезпеки ураження людей електричним струмом при пробої на корпусі. Вона реалізується автоматичним відключенням установки від мережі. Монтаж заземлювальних обладнань нейтралові виконується за ГОСТ 12.1.030-81.

У схемі за нульовий обов'язково може бути нульове проводу, заземлення нейтралові, вторинне заземлення нульового проводу. Нульовий провід повинен робити для струму короткого замикання коло з маленьким опором для спрацьовування захисту. Він повинен мати провідність не менш, ніж 0,5 провідності фазного проводу.

Вихідні дані для розрахунків занулення:

Потужність припусків:

(4.2.1.4)

де

Обираємо трансформатор потужністю 250 кВт , тому що він допускає перевантаження до 30%.

для трансформатора Р=250 кВт, Zт=0,312

Пусковий струм двигуна

Стандартний діаметр нульового проведення рівняється 18 мм. Тоді щільність струму

(4.2.1.5)

З табл. 2.63 [10] визначаємо:

Активний опір мідного кабелю:

Індуктивний опір:

Активний опір фазного проводу:

(4.2.1.6)

де - довжина нульового проводу.

Індуктивний опір фазного проводу:

(4.2.1.7)

Індуктивний опір нульового проводу:

(4.2.1.8)

де

Зовнішній індуктивний опір кола "фаза-нуль" при загальній довжині кола 0,15км:

Повний опір:

(4.2.1.9)

Струм короткого замикання:

(4.2.1.10)

Перевірка умов надійного захисту

в 3,2 раз більше чому й тому при к.з. запобіжник згорить і виключить ушкоджену фазу.

З номінального струму обираємо запобіжник ПН-2-250 з номінальним струмом 250 А. 4.3. Забезпечення пожежної й вибухової безпеки під час зміцнення деталей При технологічному процесі зміцнення деталей основними джерелами пожежі або вибуху відповідно ГОСТ 12.1.010-76 можуть бути:

- гарячі деталі, які зміцнюємо лазером або напилюванням. Профілактикою пожеж і вибухів у цьому випадку є посилений контроль над своєчасним охолодженням деталей і станом температури поверхні, тобто контроль над дотриманням правил роботи з установками й пожежної безпеки;

- перенавантаження (перегрів) електричних засобів (неправильний вибір перетинання проводів електромереж і добір електроустаткування, електродвигунів і світильників, несправність в електромережі, електроустаткуванні, відсутність або несправність заземлення) що викличе нагрівання струмопровідних частин, загоряння їх ізоляції й у результаті запалення різних горючих матеріалів, які зустрічаються з ними; неякісне виконання з'єднань електричної проводки; перевантаження різних електричних обладнань (електродвигуни, генератори, трансформатори, реле, розподільні обладнання й т.п.), що приводить до їхнього нагрівання, і так, до можливого загоряння; несправне охолодження електроприладів, неправильне його включення; коротке замикання, іскріння на колекторі або кільцях електродвигуна й генераторів, також в обладнаннях включення й вимикання; надмірний знос підшипників електромашин, у результаті чого може відбутися або перегрів підшипників, або заклинювання їх, а потім загоряння. Різні попереджувальні обладнання (плавкі запобіжники, реле, захисні автомати й ін.) при правильному доборі до даної електричної схеми здатні запобігти загорянню електроприладів у випадку перевантажень і короткого замикання. Виключити ці причини також можна, підсиливши контроль над суворим дотриманням правил будови електроустановок при монтажі електроустаткування й правильної їх експлуатації;

- підвищений рівень статичної напруги, яка виникає від під час тертя поверхонь оброблюваних деталей і обіг складових частин оснащення й може виникнути іскровий розряд. Як уже було сказано вище, дуже ефективною профілактикою статичної напруги, а особливо для пожежної й вибухової профілактики є заземлення токарного верстата;

- іскри під час загартування лазером чи при напилюванні поверхні деталей, які можуть при цьому бути прямим джерелом пожежі або вибуху. Використання захисних екранів, недопущення протікання оливи в можливих місцях виникнення іскор і бажане застосування як охолодні рідини не горючих рідин; - необережне поводження з вогнем (паління й застосування відкритого вогню в заборонених місцях, залишення без відходу електронагрівальних приладів). Для усунення цих причин необхідно підвищувати виробничу дисципліну, установити суворий протипожежний режим.

Приміщення й устаткування повинні постійно утримуватися в чистоті й систематично очищатися від горючого сміття, відходів виробництва. У приміщеннях на видних місцях повинні бути встановлені таблички із вказівкою порядку виклику пожежної охорони, знаки місць розміщення первинних засобів пожежогасіння. Також повинні бути розроблені й вивішені на видних місцях плани (схеми) евакуації людей на випадок пожежі. Протипожежні системи, установки, устаткування приміщень (протидимовий захист, пожежна автоматика, протипожежне водопостачання, протипожежні двері, клапани, інші захисні обладнання в протипожежних стінах і перекриттях і т.п.) повинні постійно утримуватися в справному робочому стані.

Розділ 5. Охорона навколишнього середовища

5.1 Загальні загрози екологічної безпеки

Джерела забруднення навколишнього середовища та їх вплив на довкілля Виробнича діяльність людства має наслідком не тільки виробництво певних благ і послуг, а й виникнення відходів, що супроводжують як виробництво, так і життєдіяльність людини. Забруднення атмосфери є одним із багатьох факторів, що впливають на довкілля. Забруднення атмосферного повітря спричинене природними можна поділити на два типи:

1) природне ;

2) антропогенне - спричинене викидами різноманітних забруднюючих речовин у процесі діяльності людини. Антропогенне забруднення за масштабами і впливом на навколишнє середовище та живих істот постійно зростає і на сьогодні суттєво перевищує природне забруднення. Існують три основні штучні джерела забруднення атмосфери:

1) викиди промисловості, що містять окис вуглецю (спалювання твердих відходів, вихлопні гази автомобілів, викиди підприємств); сірководень, сірковуглець (виготовлення штучного волокна, цукру, нафтопереробні заводи); сірковий ангідрид (хімічні підприємства, кольорова та чорна металургія, ТЕЦ); високотоксичні фтористі сполуки (сталеплавильні, алюмінієві заводи, виробництво скла, фосфорних добрив);

2) аерозольне забруднення (вугільні ТЕЦ, цементні та металургійні заводи, транспорт), за певних погодних умов утворюється фотохімічний смог; 3) радіоактивне забруднення. Різноманітні впливи людини на довкілля можна об'єднати за суттю та змінами в біосфері:

1) зміни хімічного складу біосфери, кругообігу основних поживних хімічних елементів для флори і, як наслідок - балансу речовин, що її утворюють. Вони передусім пов'язані з видобутком корисних копалин, що спричиняє значну кількість відвалів та зростання кількості викидів забруднюючих речовин в атмосферне повітря, ґрунт, водні об'єкти тощо;

2) зміна структури земної поверхні - стаціально-деструктивне забруднення біосфери планети. Так, неконтрольоване (у масштабах планети) вирубування лісів, розорювання степів, будівництво штучних озер та водосховищ негативно вплинули на режим поверхневих і ґрунтових вод. До цього переліку можна додати будівництво шляхів, урбанізацію загалом, ерозію ґрунтів, лісові та степові пожежі тощо; пов'язане з порушенням балансу

3) біоценотичне забруднення біосфери різних популяцій унаслідок або нерегульованого вилову, відстрілу тварин, знищення рідкісних видів рослин, або цілеспрямованим чи ненавмисним інтродукуванням нових видів і форм живих об'єктів;

4) зміни енергетичного, у тому числі теплового, балансу окремих регіонів земної кулі і всієї планети. Зокрема, шумове, світлове, радіаційне та електромагнітне забруднення.

5.2 Нормативно-правова база регулювання екологічної безпеки

Стан нормативно-методичної бази в галузі охорони довкілля є одним з важливих елементів механізму регулювання взаємовідносин суспільства з довкіллям.

Нормативно-методична база охорони довкілля, зокрема, включає екологічні стандарти та керівні нормативні документи Міністерства екології та природних ресурсів.

В останні роки була приділена значна увага розробці нормативних документів, що мають забезпечувати юридичну силу результатів вимірювань аналітичних підрозділів.

Так, Міністерством було затверджено розроблені Технічним комітетом зі стандартизації «Охорона навколишнього природного середовища та раціональне використання ресурсів України» та науковими закладами такі керівні нормативні документи (КНД):

-КНД 211.2.4.053-97 «Метрологічне забезпечення. Методи визначення складу та властивостей атмосферного повітря та викидів у нього. Загальні вимоги до розробки»;

*КНД 211.1,4.054-97 «Методика визначення гострої токсичності води на ракоподібних»;

*КНД 211.1.4.055-97 «Методика визначення гострої летальної токсичності води на ракоподібних»;

*КНД 211.1.4.056-97 «Методика визначення хронічної токсичності води на ракоподібних»;

*КНД 211.1.4.057-97 «Методика визначення гострої летальної токсичності води на рибах»;

*КНД 211.1.4.058-97 «Методика визначення гострої токсичності води на водоростях»;

*КНД 211.1.4.059-97 «Методика визначення токсичності води на інфузоріях»;

*КНД 211.1.4.060-97 «Методика визначення токсичності води на бактеріях»;

*КНД 211.0.0.061-97 «Метрологічне забезпечення. Оцінка стану вимірювань у галузі охорони навколишнього природного середовища та раціонального використання природних ресурсів»;

*КНД 211.2.4.062-97 «Метрологічне забезпечення. Внутрішній та зовнішній контроль якості вимірювань складу і властивостей проб викидів забруднюючих речовин в атмосферне повітря».

Екологічну паспортизацію було запроваджено з метою оздоровлення екологічної ситуації. Згідно з ГОСТ 17.0.0.04-90 "Екологічний паспорт промислового підприємства" метою екологічної паспортизації є:

-- встановлення кількісних та якісних характеристик природокористування (сировини, палива, енергії), а також кількісних та якісних характеристик забруднення природного середовища викидами, стоками, відходами, випромінюваннями;

-- отримання питомих показників природокористування та забруднення довкілля підприємством, котрі дозволяють аналізувати використовувані підприємством технології та обладнання порівняно з кращими вітчизняними і зарубіжними взірцями, а також відомості про шкоду, що завдається підприємством.

За результатами екологічної паспортизації підприємств оцінюють вплив викидів, відходів забруднюючих речовин на навколишнє середовище та здоров'я населення, а також визначають плату за природокористування та плату за забруднення довкілля; встановлюють підприємству гранично допустимі норми викидів, скидів, відходів забруднюючих речовин, планують природоохоронні заходи та оцінюють їхню ефективність; здійснюють експертизу проектів реконструкції підприємств; контролюють та оцінюють рівень дотримання підприємствами законодавства, норм та правил в галузі охорони природи; реалізують заходи щодо підвищення ефективності використання природних ресурсів, енергії та вторинних ресурсів.

При проектуванні нових підприємств або при реконструкції існуючих екологічний паспорт складає проектна організація. Екологічний паспорт погоджують з місцевими органами охорони природи та його відділами (охорони атмосферного повітря, водних ресурсів, земельних ресурсів, рослинного та тваринного світу).

Паспорт затверджує керівник підприємства, котрий відповідає за його оформлення та достовірність даних, що містяться в ньому. Процес екологічної паспортизації неперервний. Вона проводиться періодично за будь-яких змін технології, під час реконструкції підприємств та при освоєнні нової продукції.

При складанні екологічного паспорта використовують основні показники виробництва, результати інвентаризації викидів забруднюючих речовин в атмосферу, норми гранично допустимих або тимчасово погоджених викидів, дозвіл на природокористування, результати інвентаризації стоків, норми гранично допустимих або тимчасово погоджених стоків, паспорт газоочисного обладнання, паспорт водоочисного обладнання, класифікатори галузей, підприємств, статистичні звітні документи (звіти про охорону атмосферного повітря, про використання води, звіт про рекультивацію земель, зняття та використання природоохоронного шару землі, відомість інвентаризації токсичних промислових викидів, що підлягають використанню, знезараженню та захороненню, про утворення, використання вторинної сировини, про виконання плану перевезення або виробництва продукції, про поточні видатки на охорону та раціональне використання природних ресурсів; журнали обліку роботи котелень, газоочисного та водоочисного обладнання тощо), стандарти в галузі охорони природи і поліпшення використання природних ресурсів та інші нормативно-технічні документи.

Структура та зміст екологічного паспорта: титульний лист; загальні відомості про підприємство та його реквізити; короткі природно-кліматичні характеристики району розташування підприємства, опис технології виробництва, відомості про продукцію; балансова схема матеріальних потоків; відомості про використання матеріальних та енергетичних ресурсів, викиди в атмосферу, водоспоживання та водовід ведення, відходи; відомості про рекультивацію порушених земель; про транспорт підприємства; про еколого-економічну діяльність підприємства.

Розробка екологічного паспорта на підприємстві складається з таких етапів:

-- призначення робочої групи та видання наказу про складання екологічного паспорта;

-- розробка плану роботи групи та розподіл функцій між виконавцями і лінійними підрозділами з його складання;

-- збирання нормативно-технічної та звітної документації;

-- розробка балансової схеми виробництва, кількісний та якісний аналіз матеріальних потоків, визначення джерел забруднення природного середовища;

-- проведення інвентаризації викидів, встановлення ГДВ або ТПВ;

-- інвентаризація водокористування та водовідведення, а також визначення ГДС або ТПС;

-- інвентаризація природокористування та визначення кількісних показників сировини, матеріалів, енергії за видами продукції та питомих показників на одиницю продукції, що випускається;

-- інвентаризація відходів та визначення кількісних показників відходів за видами продукції і питомих показників на одиницю продукції, що випускається;

-- інвентаризація використовуваних земельних ресурсів та обсягів рекультивації земель;

-- заповнення форм екологічного паспорта. Екологічна паспортизація передбачає:

-- складання карти-схеми підприємства з нанесенням на неї джерел забруднення атмосфери, поверхневих вод, місць складування відходів, водозабирачів, меж санітарно-захисної зони, транспортних магістралей, зон відпочинку, пам'ятників архітектури, постів спостереження за забрудненням атмосферного повітря та скидів стічних вод;

-- отримання в органах охорони природи метеорологічних характеристик та коефіцієнтів розсіювання забруднюючих речовин в атмосфері міста (коефіцієнта стратифікації речовин в атмосфері, коефіцієнта рельєфу місцевості, температури зовнішнього повітря, рози вітрів, швидкості вітру);

-- отримання в органах Держгідромету або в місцевих органах охорони природи характеристик стану навколишнього середовища за фоновими концентраціями забруднюючих речовин;

-- отримання у водоканалі або в місцевих органах охорони природи характеристик водокористування за якістю води та приймачів стічних вод;

-- складання короткої характеристики виробництва з розробкою балансових схем матеріальних потоків з вказівкою на види вихідної сировини та проміжних продуктів (наводяться всі джерела виділення забруднень і точки їхнього контролю);

-- визначення даних щодо використання земельних ресурсів за результатами інвентаризації або статистичної звітності. Характеристики використання землі визначають окремо (будівлі та споруди, допоміжні виробництва, адміністративно-побутові приміщення і майданчики, сховища, звалища, накопичувачі стічних вод, озеленення, санітарно-захисні зони та інші потреби);

-- визначення загальної та питомої витрати сировини і допоміжних матеріальних ресурсів на кожний вид продукції на основі балансових схем матеріальних потоків та статистичних звітів;

-- складання відомостей за загальною та питомою витратою енергоресурсів на кожний вид продукції за даними статистичних звітів або інвентаризації.

До екологічного паспорта додають розрахунок ГДВ або ТПВ, в котрому наводять характеристики, отримані за результатами інвентаризації та розрахунків викидів в атмосферу. Організованим джерелам забруднення атмосфери присвоюють номери від 0001 до 5999, а неорганізованим джерелам -- від 6001 до 9999, забруднюючим речовинам присвоюють коди.

Характеристики водоспоживання, водовідведення та очищення стічних вод на підприємстві визначають за даними інвентаризації, розрахунків ГДС або ТПС, статистичних звітів. До таблиць додають балансові схеми водоспоживання та водовідведення з посиланням на витрату та втрати води на кожному виробництві протягом години. Поряд із загальними показниками водоспоживання розраховують питомі норми водоспоживання та водовідведення на одиницю продукції. Вказують показники складу та властивості стічної води, температуру, біологічне та хімічне споживання кисню, водневий показник, завислі речовини, мінералізацію, токсичність. Наводять характеристики очисних споруд та водооборотних систем, а також характеристики відходів, що утворюються на підприємстві за даними інвентаризації.

Екологічний паспорт затверджується після погодження з органами охорони природи.

За результатами екологічної паспортизації підприємства видається наказ з додатком, в котрому міститься комплекс природоохоронних заходів на підприємстві.

5.3 Загроза екології при напилені композиційних матеріалів

Автомобіль викидає три види забруднюючих речовин при роботі: відпрацьовані гази двигуна, картерні гази й паливні випари. Основними токсичними компонентами відпрацьованих газів є оксид вуглецю, оксиди азоту, двооксид сірки, і інші. Питомі викиди токсичних речовин залежать від потужності й типу двигуна, режиму його роботи, технічного стану автомобіля, якості палива.

Картерні гази виникають під час роботи циліндро-поршневої групи (ЦПГ) через зношування поршневих кілець. Внаслідок цього відбувається прорив газів у картер.

В даній роботі досліджуються технологічні методи підвищення зносостійкості ЦПГ, яке приведе до зниження викидів картерних газів.

Розглядаючи саму технологію нанесення покриттів слід звернути увагу на такі речі, як справна, сучасна вентиляційна система. У процесі напилення в повітря викидаються шкідливі для людини сполуки, які можуть негативно відзначитися на дихальній системі організму. В такому разі у вентиляційній системі повинні бути спеціальні фільтри, які будуть здатні затримувати металеві частинки, які не потрапили чи відділилися від напилюваної поверхні. Оскільки при напиленні відсутні викиди небезпечних для здоров'я газів, то достатньо відвести вентиляцію на деяку висоту, щоб уникнути можливого збільшення концентрації викидів у житлових районах. Взагалі метод напилення матеріалів є екологічно чистим, так як використовується лише нагріті метали і відсутні шкідливі компоненти чи гази, які виникають в тих чи інших промислових процесах. Достатньо лише контролювати якість та справність фільтрів, щоб не допустити викидів великих часток металів, які із-за гостроти країв можуть пошкодити шкіру людей, котрі мешкають поблизу.

Розділ 6. Безпека польотів

6.1 Безпека польотів в цивільній авіації

Проблема гарантування безпеки польотів (БП) завжди визнавалася актуальною для цивільної авіації (ЦА). Це, зокрема, відображено у цілях й завданнях Міжнародної організації ЦА (ІКАО), сформульованих у статті 44 Конвенції про міжнародну ЦА, яка покладає на ІКАО відповідальність за гарантування безпечного й впорядкованого розвитку міжнародної ЦА у всьому світі.

Вимоги до навчання авіаційного персоналу докладно викладені у Керівництві з навчання у галузі людського чинника (Док. 9683, AN/950, 1998). Міжнародні стандарти і рекомендована практика щодо гарантування БП містяться у Додатках до Конвенції про міжнародну ЦА: Додатку 1 - Видача свідоцтв авіаційному персоналу (2001), Додатку 6 - Експлуатація повітряних суден (2006), Додатку 8 - Льотна придатність повітряних суден (2005), Додатку 13 - Розслідування авіаційних подій та інцидентів (2001), Додатку 14 - Аеродроми (2006). Окремі аспекти гарантування БП викладені у таких документах ІКАО: Керівництво з льотної придатності (Док. 9760, 2007), у якому містяться інструктивні вказівки зі здійснення безперервної програми збереження льотної придатності (ЛП); Головні принципи врахування людського чинника при технічному обслуговуванні повітряних суден (Док. 9824), де наводиться інформація з питань контролю помилки людини й розробки заходів з нейтралізації помилок при ТО ПС; Головні принципи врахування людського чинника при проведенні перевірок організації контролю за гарантуванням безпеки польотів (Док. 9806), де наводяться інструктивні вказівки з підготовки або проведенню перевірки організації контролю за гарантуванням БП з урахуванням працездатності й обмежень людини; Проведення перевірок стану безпеки польотів при здійсненні польотів авіакомпаніями (програма LOSA) (Док. 9803, AN/761, 2002), де міститься інформація з питань контролю й керування у сфері помилки людини й розробки заходів з нейтралізації помилок в умовах експлуатації; Керівництво з розслідування авіаційних подій й інцидентів (Док. 9756, AN/965, 2000, частина I - Організація й планування, частина III - Розслідування, частина IV - Надання звітів), яке надає інформацію й рекомендації щодо процедур, практики і методах, які можуть використовуватися при розслідуванні авіаційних подій (АП) й інцидентів; Обстеження стану безпеки польотів при роботі у нормальних умовах (NOSS) (Док. 9910, AN/473, 2008), де наведені методи збору даних, перевірки достовірності даних, аналізу даних й підготовки остаточного звіту про БП при нормальній роботі, що здійснюються у межах контролю чинників небезпеки (ЧН) й помилок і є одним з інструментів керування БП, використовуваним для контролю стану БП при нормальній авіаційній діяльності; Керівництво з проведенню перевірок організації контролю за гарантуванням безпеки польотів (Док. 9735, AN/960, 2006), в якому міститься інформація й інструктивні вказівки, що стосуються стандартних процедур ІКАО перевірок організації контролю за гарантуванням БП; Керівництво з організації контролю за гарантуванням безпеки польотів (Док. 9734, AN/959, 2006), де розглянуті характеристики загальної відповідальності за організацію контролю за гарантуванням БП, визначається ряд критичних елементів, які повинні братися до уваги: основне авіаційне законодавство, конкретні нормативні акти з питань експлуатації, державна система ЦА і державні функції контролю за гарантуванням БП, кваліфікація й підготовка технічного персоналу; технічний інструктивний матеріал, інструменти й надання важливій інформації щодо БП; зобов'язання з видачі свідоцтв, сертифікації, санкціонуванню і затвердженню; зобов'язання з нагляду і вирішенню проблем гарантування БП; Небезпеки на місцях авіаційних подій (Циркуляр 315, AN/179, 2006), де розглянуто характер й види професійної небезпеки, засоби керування ризиком, обумовлених ЧН, а також необхідність застосовувати систему керування БП, яка виявляє наявні ЧН, визначає рівні дії, оцінює ризики і вводить ефективні заходи з усунення або контролю дії; Збірка матеріалів “Людський чинник” №16. Кроскультурні чинники й безпека польотів (Циркуляр 302, AN/175, 2004), в якому розглядаються пов'язані з БП культурологічні чинники в авіації; Керівництво з навчання розслідувачів авіаційних подій (Циркуляр 298), у якому викладені важливі проведення розслідувань АП, спрямовані на виявлення ЧН й попередження АП.

23 жовтня набули чинності зміни до Додатків 6, 11 й 14, які полягали у появі посилань на Керівництво з керування безпекою польотів (Док. 9859, AN/460). У цьому документі наведено узагальнений виклад сучасного підходу до БП і визначення БП: безпека польотів є стан [авіаційної транспортної системи (АТС)], при якому імовірність спричинення шкоди особам або нанесення збитку майну знижена до прийнятного рівня і підтримується на цьому або нижчому рівні за допомогою безперервного процесу виявлення ЧН та контролю чинників ризику. У 2009 році набула чинність друга редакція цього документу. У цьому документі розлого викладені питання організаційного чинника, виявлення ЧН, контролю ризику безпеки тощо.

Гарантування БП реалізується на трьох етапах, кожен з яких має свої особливості:

- проектування ПС, коли закладається БП;

- виробництва і випробувань, коли вона забезпечується і контролюється;

- експлуатації, коли БП виявляється, підтримується та підвищується.

Наразі прийнято розглядати ЦА як складну соціо-технічну виробничу систему, що діє успішно або у якій можуть виникати відмови. Маючи засоби захисту, АТС вимагає для функціонування точної координації великої кількості людських й механічних компонентів. Окремі точки збоїв в АТС рідко є послідовними. Завдяки захисту авіаційні події (АП) відбуваються лише через взаємодію ряду відмов. Потрібне поєднання певної сукупності сприяючих чинників, кожен з яких є необхідним, але сам по собі недостатній для руйнування засобів захисту. Розрізняють приховані та активні відмови.

Прихована відмова - результат дії або рішення, наслідки яких можуть залишатися прихованими протягом тривалого часу, мають можливості для пошкодження захисту і виявляються лише при руйнуванні захисту. Такі відмови зазвичай відбуваються на рівні ухвалення рішення людьми, які знаходяться далеко від місця та часу АП. Помилкові рішення можуть породжуватися недосконалою конструкцією устаткування, погано поставленим завданням, суперечливими цілями, некоректними стандартними експлуатаційними правилами, відсутністю підготовки, нехтуванням ЧН, бути наслідком недостатності ресурсів, проявлятися у поганому плануванні або виконанні. Деякі небезпечні рішення не можна попередити, тому необхідно їх виявляти й послаблювати (парирувати) їхніх несприятливі наслідки.

Активна відмова - помилка або порушення, яке здійснює безпосередню несприятливу дію і може призводити до АП. Головна відмінність між експлуатаційними помилками і порушеннями полягає у намірі. Особа, що прагне робити все правильно, але не в змозі це зробити здійснює помилку. Помилка - це відхилення від того, що визначене правильною або належною поведінкою. Вони є природнім продуктом взаємодій людини й технології у виробничій системі та є основними чинниками більшості АП. Навіть компетентний персонал здійснює помилки. Область експлуатаційних помилок у ЦА величезна: недоліки конструкції, неналежне устаткування, недостатня професійна підготовка, недосконалі правила, неадекватні контрольні карти, керівництва тощо. Однак, дії людини не є єдиною причиною АП. При розслідуванні деяких АП було встановлено, що дії людини лише ініціювали ланцюг латентних відмов, довгий час прихованих у АТС. Засоби захисту не дозволяють, щоб одна дія стала причиною АП, якщо лише система до цієї дії не була послаблена внаслідок відключення засобів захисту. Вади системи, а також недоліки організаційного й управлінського характеру і багато інших прихованих відмов були першопричинами багатьох АП, винуватцями котрих вважали людей. Безпечна стійкість не стільки питання безпомилкової роботи, але швидше питання ефективного контролю помилок. Мільйони експлуатаційних помилок здійснюються щодня. Проте, більшість з них уловлюється захистом, і лише окремі призводять до збоїв БП. Коли захист працює, приховані й активні відмови не «проламуватимуть» його. Коли захист не працює, то наслідком є АП.

Передбачити експлуатаційні помилки надзвичайно важко: неможливо передбачати усі людські слабкості. Проте розуміння експлуатаційного середовища, тобто розуміння чинників й умов, що впливають на працездатність людини на робочому місці, допомагає здійсненню ефективних заходів, які включать стратегії зменшення, захоплення і толерантності помилок. Стратегії зменшення помилок втручаються безпосередньо у джерело помилки, скорочуючи або виключаючи чинники, що здійснюють внесок до експлуатаційної помилки. Вони включають конструювання спрямоване на людину (наприклад, поліпшення доступу до компонентів ПС при технічній експлуатації), ергономічні чинники (наприклад, поліпшення освітлення, врахування при проектуванні органів керування й індикаторів характеристик людини), навчання (для скорочення порушень стандартних експлуатаційних правил), контроль рівня шуму, вібрації й температури та інших умов, що є причиною стресових ситуацій, а також розробку ефективних програм навчання, спрямованих на поліпшення взаємодії та взаєморозуміння між членами екіпажа. Стратегії захоплення помилки припускають, що помилка вже зроблена, і спрямовані на “захоплення” помилки перед появою її несприятливих наслідків (таблиці контрольних перевірок, карти завдань, контрольні карти перевірок, буфери безпеки, перехресний контроль тощо). Стратегії толерантності помилок є здатністю приймати помилку без серйозного наслідку. Вони полягають у системній надмірності - дублюванні систем на ПС, оглядах конструкції - програмах оглядів, які забезпечують можливості своєчасного виявлення дефектів, конструюванні устаткування, яке здатне виправляти помилки або може контролювати чи навіть доповнювати дії людини й поліпшувати його працездатність.

Як правило, перед АП проявляються його передвісники, які часто вони стають очевидними лише ретроспективно. Хоча розслідування АП має важливе значення, проте, воно не найліпший засіб виявлення недоліків АТС, оскільки є запізнілим та дорогим. Необхідно аналізувати стан БП й виявляти приховані небезпечні умови, що можуть слугувати причиною АП. Для попередження АП необхідно: контролювати організаційні процеси - дії, над якими організація має розумний ступінь прямого контролю (розробка політичного курсу, планування, зв'язок, розподіл ресурсів, нагляд тощо); поліпшувати умови на робочому місці - чинники, які безпосередньо впливають на ефективність людей на робочих місцях (стабільність робочої сили, кваліфікація й досвід, моральний стан, довіра, ергономіка тощо); визначати приховані умови - умови, які присутні перед АП й стають очевидними завдяки чинниками, що приводять їх у дію; обмежувати активні недоліки - дії або бездіяльність людей, які здійснюють безпосередній несприятливий вплив; підсилювати засоби захисту - ресурси, які організації повинні протиставити для захисту від ризиків (правила, технології, навчання).

6.2 Технології напилення керамічних матеріалів в підвищенні надійності АНТ

По причині великого обсягу пасажиропотоку, сучасні аеропорти мають дуже щільний графік роботи. Кожна рухома наземна одиниця має свої робочі коридори, за рамки яких виходити просто недопустимо. Це досягається шляхом жорсткого контролю технічного стану, та бездоганних розкладах руху. Але не можна забувати про малий, але все ж таки шанс на відмову. Цей шанс слід знижувати всіма можливими засобами.

От наприклад при напиленні композиційних матеріалів, зростає загальна міцність деталей та їх зносостійкість. Тому, щоб на ЗПС, по причинах відмов двигунів, чи інших частин спец транспорту, слід застосовувати таку технологію.

Взагалі таки зупинки та зсунення календарних графіків несуть грошові збитки, але при появі одразу декількох несприятливих чинників може призвести до авіаційних пригод. А це може в свою чергу призвести до людських жертв.

Тому в такій галузі, як авіація слід застосовувати будь-які технології та засоби, які збільшують зносостійкість та зменшують шанс відмови як деталей так и взагалі вузлів. А представлена в роботі технологія являє собою не лише підвищення робочих параметрів, але й просте відновлення. Тому дана технологія являється не тільки як «підсилювач», але ще й просто «ремонтом» зношених деталей, і застосовуючи її можна отримати і деталь, і її вдосконалення.

Висновки

Аналіз нечисленних літературних джерел, які як відзначено в роботі, присвячених дослідженням триботехнічних властивостей детонаційних покриттів, дозволяє укласти, що найбільше промислове застосування, особливо в важко навантажених і відповідальних вузлах тертя, одержали детонаційні зносостійкі покриття на основі карбіду вольфраму, кобальта й нікелю, які, як відомо, ставляться до дефіцитних і дорогих матеріалів. Одержання зносостійких покриттів методом детонаційно-газового напилювання порошкоподібних сумішей, що не містять дефіцитних компонентів, може бути забезпечене, у першу чергу, за рахунок створення нових порошкових матеріалів шляхом гетерогенізації вихідної сировини. Що здійснювалося введенням різних легуючих присадок, що утворюють мілкодисперсні зміцнюючі фази. Управляючи технологічними процесами одержання композиційних порошків, вдається реалізувати не тільки бажаний хімічний склад, але й задану структуру матеріалу, оптимізуючий комплекс властивостей, потенційно закладених у ньому хімічним складом.

Виконані дослідження є основою практичного підвищення зносостійкості детонаційних покриттів при зміцненні й відновленні деталей машин, що працюють в умовах тертя, разом з тим накопичений при цьому досвід може бути використаний і при наступних розробках аналогічних напилюваних покриттів або інших порошкових матеріалів, до яких застосовні ті ж самі принципи. У результаті аналізу експериментальних даних і теоретичних узагальнень, отриманих у роботі при дослідженні зносостійкості детонаційних покриттів з безнікелевих композиційних порошкових матеріалів на основі заліза, можна сформулювати наступні висновки:

1. Проведений інформаційний пошук по тематиці магістерської роботі.

2. Розглянуті сучасні теорії й механізми зношування пара тертя.

3. Виходячи із завдань, поставлених у пару робітники, у магістерській роботі, підібрані відповідні об'єкти засобі й методики досліджень.

4. Розроблені методологічні основи створення детонаційно-газових зносостійких покриттів з порошкових матеріалів системи Fe-Мn.

5. Установлений компонентний склад детонаційно-газових зносостійких покриттів системи Fe-Мn

6. Визначені закономірності вивчити закономірності формування й зношування поверхневих структур детонаційно-газових покриттів системи Fe-Мn

7. Визначена сфера практичного застосування перед логічних у магістерській роботі методів зміцнення й відновлення трибосполучень.

Список використаної літератури

1. Харламов 10. А. Классификация способов газотермического напылеиия покрытий / Свароч. пр-во,-- 1982.-- № 3.-- С. 40--41.

2. Харламов Ю. А. Способы газотермического напыления покрытий и их классификация.-- Ворошиловград: Машиностроит. ин-т, 1981.-- 149 с--Рукопись деп. в УкрНИИНТИ, № 2481.

3. Шоршоров М. X., Кудинов В. В., Харламов Ю. А. Состояние и перспективы развития нанесения покрытий распылением / Физика и химия обработки материалов.-- 1977.-- № 5.

4. Демиденко Л. М. Высокоогнеупорные композиционные покрытия.-- М. : Металлургия, 1979.

5. Бартенев С. С, Федько Ю. П., Григоров А. И. Детонационные покрытия в машиностроении.-- Л. : Машиностроение, 1982.

6. Зверев А. П., Шаривкер С. 10., Астахов Е. А. Детонационное напыление покрытий.-- Л. Судостроение, 1979.

7. Семенов А. П., Федько Ю. П., Григоров А, И. Детонационные покрытия и их применение. -- М. : НИИмашиностроения.-- 1977.

8. Шоршоров М. X., Харламов Ю. А. Физико-химические основы де-тонационно-газового напыления покрытий.-- М. : Наука, 1978.

9. Манохин Б. И., Золотухин В. Д., Гравцев Н. В. Влияние параметров разрядного контура на формирование пленок при напылении электрическим взрывом // Физика и химия обраб. материалов.-- 1973.-- № 2..

10. Сухара Т., Фукуда С. Нанесение покрытий взрывающимися проволочками // Получение покрытий высокотемпературным распылением.--М. : Атомиздат, 1973.

11. Кудинов В. В., Иванов В. М. Нанесение плазмой тугоплавких покрытий.-- М. : Машиностроение, 1981.

12. Оситинский Б. Л., Баско В. П. Применение плазменного напыления для изготовления контактных участков керамико-металлических электронагревателей // Порошковая металлургия.-- 1977.-- № 1.

13. Ощепков Ю. П., Кузнецов В. В., Никольский Н. Н. Влияние механического и теплового активирования на структурообразование и свойства твердосплавных покрытий // Защит, покрытия.-- Л. : Наука, 1979.

14. Орлов Л. П., Катков И. Н., Рогинский В. Э. Применение газотермических покрытий для повышения износостойкости деталей, механизмов и коррозионной стойкости изделий // Теория и практика газотермического нанесения покрытий.-- Рига : Зинатне, 1980.-- Т. 2.

15. Газотермическое напыление композиционных порошков/ А.Я. Кулик, Ю.С. Борисов, А.С. Мнухин, М.Д. Никитин. -- Л. : Машиностроение, 1985. 16. Кудинов В. В. Плазменные покрытия. -- М.: Наука, 1977.

17. Современные композиционные материалы/Под ред. Д. Браутмана, Р. Крока. -- М.; Мир, 1970.

18. Плазменные покрытия состава Ni --Ti для защиты титановых сплавов от износа/Ф. И. Китаев, А. Г. Цидулко. -- В кн.: Высокотемпературная защита материалов. Л.: Наука, 1981.

19. Применение композитных порошков типа керамика--алюминий--никель для получения покрытий/Н. Н. Новиков, С. Р. Пустотина, -- М. Соловьев. -- Порошковая металлургия, 1979, № 11.

20. Свойства и применение плазменных покрытий из термореагирующего никель-алюминиевого порошка/Г. Д.Никифоров, А. Г. Цидулко. -- I кн.: Неорганические и органосиликатные покрытия. Л.: Наука, 1975.

21. Федорченко И. М., Пугина Л. И. Композиционные спеченные антифрикционные материалы. Киев: Наукова думка, 1980.

22. Борисов Ю.С. , Борисова А.Л. Плазменные порошковые покрытия. -- К.: Техника, 1986.

23. Антошин Е. В. Газотермическое напыление покрытий.-- М. : Машиностроение, 1974. 24. Готлиб Л. И. Плазменное напыление,-- М. : ЦИНТИхим-нефтемаш, 1970.

25. О перспективах развития электродуговых плазмотронов для напыления / В. Е. Белащенко, В. А. Вахалин, А. М. Гонопольский и др.-- В кн.: Процессы и оборудование плазменной обработки металлов. М. : ВНИИавтогенмаш, 1980.

26. Лясников В. Н., Глебов Г. Д. Свойства плазменных покрытий.-- Электронная техника. Сер. Электроника СВЧ, 1979, вып. 2.

27. Костиков В. И., Шестерин Ю. А. Плазменные покрытия.-- М. : Металлургия, 1978.

28. Прочность сцепления плазменных покрытий с основой / Б. А. Ляшенко, В. В. Ришин, В. Г. Зильберберг, С. Ю Шаривкер.-- Порошковая металлургия, 1969, № 4.

29. Износостойкие плазменные покрытия из композиционных порошков / А. С. Синьковский, В. К. Толок, Г. Г. Онищенко и др.-- Защитные покрытия на металлах, 1976, вып. 10, с. 69--71.

30. Исследование возможности повышения физико-механических характеристик плазменных покрытий на основе тугоплавких окислов / А. А. Ткаченко, Г. Н. Миллер, А. А. Ковалевский и др.-- В кн.: Теория и практика газотермического нанесения покрытий. Рига : Зинатне, 1980, т. 2, с. 61--64.

31. Панасюк А.Д., Уманский А.П., Винокуров В.Б. Основы формирования структурных составляющих композиционных порошковых материалов на основе карбида титана // Тезисы доклада VIII Международного совещания по порошковой металлургии. - Дрезден, 1985. - С.115

32. Ясинская Г.А. Смачиваемость тугоплавких карбидов, боридов и нитридов расплавленными металлами// Порошковая металлургия. - 1966. - №7. - С.55 - 57.

33. Билык И.И. Перспективы использования карбонитридов в качестве твердой составляющей металлокерамических твердых сплавов// Порошковая металлургия. - 1972. - №6. - С.49 - 52.

34. Крумпхольд Р. Новый материал на основе карбида и карбонитрида титана с низким содержанием связующего// Труды семинара по развитию и использованию порошковой металлургии в машиностроении. - Минск., 1985.

35. Дроздецкая Г.В., Васильева Н.О., Орданьян С.С. Свойства керметов на основе ультрадисперсного корбонитрида титана / Новые порошковые материалы // Труды 15 Всесоюзной конференции. Киев, 1986. - С.52 - 56.

36. Туманов А.В., Митин Б.С., Панов А.С. Исследование кинетики смачивания карбида и карбонитрида титана расплавами интерметаллидов никеля // Журн. физической химии. - 1980. - 54. - №6. - С.1434 - 1437.

37. Бердиков В.Ф., Бабанин А.В., Артемьева Ю.П. Определение модуля Юнга различных абразивных материалов методом микровдавливания// Заводская лаборатория. - 1975. - №8. - С.1014 - 1019.

38. Комратов Г. H. Кинетика окисления порошков двойного карбида титана и хрома и карбида хрома//Порошковая металлургия.-- 1999. -- №9/10. -- С. 52--57.

39. Тарова Л.С. Безопасность жизнедеятельности и защита окружающей среды. ТГТУ, 2004.

40. Брахнова И. Г. Токсичность порошков металлов и их соединений.-- Киев : Наукова думка, 1971.

41. Коган Э. И., Хайкин В.А. Охрана труда на предприятиях автомобільного транспорта. -- М.: Транспорт. -- 1984.

Страницы: 1, 2, 3, 4


© 2010 Рефераты